首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE OF REVIEW: The reputation of acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitors has changed profoundly from promising new drugs for cardiovascular prevention to drugs without clinical benefits or possibly even with adverse effects. RECENT FINDINGS: ACAT inhibitors decrease the intracellular conversion of free cholesterol into cholesteryl ester in a number of tissues, including intestine, liver and macrophages. In contrast to promising results in experimental animal models, all subsequent clinical studies in humans with ACAT inhibitors failed to show lipid profile changes as well as reductions in surrogate markers for coronary artery disease. In fact, there was even a tendency towards an increase in atheroma burden in the most recent and well executed clinical trials. In addition, the inhibition of this pivotal enzyme in cholesterol esterification may interfere with reverse cholesterol transport. SUMMARY: In our opinion, the consistent negative findings in recent clinical trials have virtually eliminated the chances for this class of drugs to be introduced for cardiovascular prevention. Possible strategies focused on selective ACAT 2 inhibition or the combination of ACAT inhibitors with compounds that stimulate reverse cholesterol transport may prove to have clinical benefit. This will have to await further clinical research in humans, however, as, obviously, rodent models cannot provide reliable data as to the efficacy of this class of drugs in humans.  相似文献   

2.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent Km values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9 ± 2.1 μM and 13.9 ± 0.3 μM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits ~85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl–oleate formation without influencing the retinyl–palmitate formation. Using this inhibitor, we estimate that ~64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

3.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent K(m) values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9+/-2.1 microM and 13.9+/-0.3 microM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits approximately 85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl-oleate formation without influencing the retinyl-palmitate formation. Using this inhibitor, we estimate that approximately 64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

4.
5.
H M Miziorko  C E Behnke  F Ahmad 《Biochemistry》1989,28(14):5759-5764
Incubation of 3-chloropropionyl-CoA with 3-hydroxy-3-methylglutaryl-CoA synthase results in exchange of the C2 proton with solvent as inactivation of enzyme proceeds. This enzyme is also inhibited by S-acrylyl-N-acetylcysteamine; the limiting rate constant for inactivation by the acrylyl derivative (0.36 min-1) slightly exceeds the value measured for chloropropionyl-CoA (0.31 min-1). These observations support the intermediacy of acrylyl-CoA in the chloropropionyl-CoA-dependent inactivation of hydroxymethylglutaryl-CoA synthase. Inhibition of fatty acid synthase by chloropropionyl-CoA is primarily due to alkylation of a reactive cysteine, although secondary reaction with the enzyme's pantetheinyl sulfhydryl occurs. Modification of fatty acid synthase by S-acrylyl-N-acetylcysteamine occurs at a limiting rate (1.8 min-1) that is comparable to that estimated for chloropropionyl-CoA-dependent inactivation. However, this enzyme lacks the ability to deprotonate C2 of an acyl group such as the chloropropionyl moiety. Since such a step would be required to generate an acrylyl group from chloropropionyl-S-enzyme, it is likely that a typical affinity labeling process accounts for inactivation of fatty acid synthase by chloropropionyl-CoA. HMG-CoA lyase is also inhibited by S-acrylyl-N-acetylcysteamine. In contrast to the ability of this reagent to serve as a mechanism-based inhibitor of hydroxymethylglutaryl-CoA synthase and an affinity label of fatty acid synthase, it acts as a group-specific reagent in modifying HMG-CoA lyase (kappa 2 = 86.7 M-1 min-1).  相似文献   

6.
7.
8.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.  相似文献   

9.
S M Lau  P Powell  H Buettner  S Ghisla  C Thorpe 《Biochemistry》1986,25(15):4184-4189
The flavoprotein medium-chain acyl coenzyme A (acyl-CoA) dehydrogenase from pig kidney exhibits an intrinsic hydratase activity toward crotonyl-CoA yielding L-3-hydroxybutyryl-CoA. The maximal turnover number of about 0.5 min-1 is 500-1000-fold slower than the dehydrogenation of butyryl-CoA using electron-transferring flavoprotein as terminal acceptor. trans-2-Octenoyl- and trans-2-hexadecenoyl-CoA are not hydrated significantly. Hydration is not due to contamination with the short-chain enoyl-CoA hydratase crotonase. Several lines of evidence suggest that hydration and dehydrogenation reactions probably utilize the same active site. These two activities are coordinately inhibited by 2-octynoyl-CoA and (methylenecyclopropyl)acetyl-CoA [whose targets are the protein and flavin adenine dinucleotide (FAD) moieties of the dehydrogenase, respectively]. The hydration of crotonyl-CoA is severely inhibited by octanoyl-CoA, a good substrate of the dehydrogenase. The apoenzyme is inactive as a hydratase but recovers activity on the addition of FAD. Compared with the hydratase activity of the native enzyme, the 8-fluoro-FAD enzyme exhibits a roughly 2-fold increased activity, whereas the 5-deaza-FAD dehydrogenase is only 20% as active. A mechanism for this unanticipated secondary activity of the acyl-CoA dehydrogenase is suggested.  相似文献   

10.
Autoacylation of myelin proteolipid protein with acyl coenzyme A   总被引:7,自引:0,他引:7  
Rat brain myelin proteolipid protein (PLP) is known to contain long chain, covalently bound fatty acids. In the course of characterizing the mechanism of acylation, we found that the isolated PLP, in the absence of any membrane fraction, was esterified after incubation with [3H]palmitoyl coenzyme A (CoA). This observation demonstrated that the protein acts as both an acylating enzyme and an acceptor. Thus, acylation occurs by an autocatalytic process. The possibility of a separate acyltransferase that copurifies with PLP was essentially excluded by adding brain subcellular fractions to the reaction mixtures and by changing the isolation procedure. After deacylation, the protein was acylated at a 4-fold greater rate, suggesting that the original sites were reacylated. The palmitoyl-CoA concentration followed Michaelis kinetics, confirming that spontaneous acylation was not occurring. Pulse-chase experiments indicated that the reaction entails net addition of acyl groups. Although fatty acids are bound via an O-ester linkage, free SH groups are required in the reaction. Denaturation of the protein by sodium dodecyl sulfate or heat inhibits the reaction, whereas cerulenin has little or no effect. PO, the major protein in peripheral nerve myelin, is also an acylated protein, but it was not labeled upon incubation of either peripheral myelin or the isolated protein with [3H]palmitoyl-CoA, demonstrating that it is acylated by a different route. Several synthetic peptides derived from PLP sequences with sites known to be acylated in vivo as well as a series of deacylated PLP tryptic peptides were not labeled, indicating that integrity of the protein is required for acylation. Limited proteolysis and peptide mapping showed that the same sites are acylated in vitro or in vivo, suggesting that the autocatalytic acylation reaction is physiological.  相似文献   

11.
12.
13.
Rat liver acyl coenzyme A:diacylglycerol acyltransferase, an intrinsic membrane activity associated with the endoplasmic reticulum, catalyzes the terminal and rate-limiting step in triglyceride synthesis. This enzyme has never been purified nor has its gene been isolated. Inactivation by ionizing radiation and target analysis were used to determine its functional size in situ. Monoexponential radiation inactivation curves were obtained which indicated that a single-sized unit of 72 +/- 4 kDa is required for expression of activity. The size corresponds only to the protein portion of the target and may represent one or several polypeptides.  相似文献   

14.
15.
Y Ikeda  K Okamura-Ikeda  K Tanaka 《Biochemistry》1985,24(25):7192-7199
We systematically studied the visual spectral changes of short-chain, medium-chain, and long-chain acyl coenzyme A (acyl-CoA) dehydrogenases, purified from rat liver mitochondria, that occur upon reaction with acyl-CoA in the absence of an electron acceptor (half-reaction). Acyl-CoA esters having various chain lengths were tested, and changes in the steady-state spectral parameters were correlated with the turnover number in the complete reaction, which represented the ability of an enzyme/substrate combination to produce an enoyl-CoA. The long-wavelength absorbance, centered around 580 nm, was observed only in the enzyme/substrate combinations in which enoyl-CoA product was produced at a significant rate in the complete reaction. There was a good correlation between the magnitudes of the long-wavelength absorbance and the turnover numbers. In contrast, the bleaching of the flavin chromophore at 450 nm was observed not only in the titration with preferred substrates but also in that with unfavorable substrates, which were shorter than favorable substrates. In the interaction with the shorter than favorable substrates, however, enoyl-CoA was not produced, nor did long-wavelength absorbance occur. When short-chain and medium-chain acyl-CoA dehydrogenases were reacted with longer than favorable substrate from which no enoyl-CoA was produced, neither the appearance of the long-wavelength absorbance nor bleaching of flavin chromophore was observed. These data suggest that the catalytic base, which abstracts alpha-proton, and flavin adenine dinucleotide are internally located, and the region containing these two sites may physically be in the form of crevice or pocket.  相似文献   

16.
17.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

18.
Neurospora crassa is able to use long-chain fatty acids as the sole carbon and energy source. After growth on oleate there was nearly a 10-fold induction of the acyl coenzyme A (CoA) synthetase and a fivefold increase in the activity of the 3-hydroxyacyl-CoA dehydrogenase. There was a slight induction of the enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase, but no apparent induction of the flavin-linked acyl-CoA dehydrogenase. These noncoordinate changes in the fatty acid degradation enzymes suggest that they are not organized into a multienzyme complex as is found in bacteria.  相似文献   

19.
Compound 58-035 (3-[decyldimethylsilyl]-N-[2-(4-methylphenyl)-1-phenylethyl]pro panamide) has been found to inhibit the accumulation of cholesteryl esters in both rat hepatoma (Fu5AH) cells and arterial smooth muscle cells in culture. To explore the specificity of 58-035, we have studied the esterification of cholesterol, retinol, and glycerides by the Fu5AH cell and by isolated membranes. Exposure of Fu5AH to cholesterol/phospholipid dispersions and 58-035 (greater than 100 ng/ml) for 24 h resulted in greater than 95% inhibition of cholesterol esterification while cellular free cholesterol increased slightly. Inhibition was also rapid; incorporation of [3H]oleate into cholesteryl [3H]oleate equaled only 12% of control value after 30 min with 58-035 at 5 micrograms/ml. In contrast, there was no decrease in [3H]oleate incorporation into phospholipids or diglycerides, nor was the esterification of [3H]retinol inhibited by 58-035. In microsomal fractions, acyl-CoA:cholesterol acyltransferase could be inhibited completely by 58-035, while activities of acyl-CoA: retinol acyltransferase and triglyceride synthesis proceeded at 75-100% of control values. These observations that 58-035 is highly selective allow the inference that acyl-CoA:cholesterol acyltransferase is a separate microsomal enzyme whose activity can be modulated independently from acyl-CoA:retinol acyltransferase and other cellular acyltransferases.  相似文献   

20.
Synthesis of long-chain fatty alcohols in preputial glands of mice is catalyzed by an NADPH-dependent acyl coenzyme A (CoA) reductase located in microsomal membranes; sensitivity to trypsin digestion indicates that the reductase is on the cytoplasmic side of the membrane. Results with pyrazole and phenobarbital demonstrate the reaction is not catalyzed by a nonspecific alcohol dehydrogenase or an aldehyde reductase. Acyl-CoA reductase activity is sensitive to sulfhydryl and serine reagent modification, is stimulated by bovine serum albumin, and produces an aldehyde intermediate. The activity is extremely detergent sensitive and cannot be restored even after removal of the detergents. Phospholipase C or asolectin treatment does not release the acyl-CoA reductase from microsomal membranes, but causes a significant decrease in the activity recovered in the membrane pellet. Glycerol does not solubilize the reductase activity, nor does 3.0 m NaCl; however, the combination of glycerol and 3.0 m NaCl did release about 50% of the acyl-CoA reductase from the microsomal pellet. Substrate concentration curves obtained in the presence or absence of bovine serum albumin show significant differences in enzyme activities. The reductase is sensitive to the concentration of palmitoyl-CoA and is progressively inhibited at levels beyond the critical micellar concentration of the substrate. The apparent Km for acyl-CoA reductase is 14 μm; however, the maximum velocity varies with the concentration of albumin used. Expression of enzyme activity in delipidated microsomes requires specific phospholipids, which suggests that in vivo regulation of acyl-CoA reductase activity could be achieved through modifications in membrane lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号