首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Although CYP3A induction by dexamethasone has been extensively documented, its mechanism is still unclear because both the role of the glucocorticoid receptor and the ability of dexamethasone to activate the human pregnane X receptor have been questioned. In an attempt to resolve this problem, we investigated the response of CYP3A4 to dexamethasone (10 nm-100 microm) in primary human hepatocytes and HepG2 cells, using a variety of methods: kinetic analysis of CYP3A4 and tyrosine aminotransferase expression, effects of RU486 and cycloheximide, ligand binding assay, cotransfection of HepG2 cells with CYP3A4 reporter gene constructs and vectors expressing the glucocorticoid receptor, pregnane X receptor or constitutively activated receptor. In contrast to rifampicin (monophasic induction), dexamethasone produces a biphasic induction of CYP3A4 mRNA consisting of a low-dexamethasone component (nmol concentrations) of low amplitude (factor of 3-4) followed by a high-dexamethasone component (supramicromolar concentrations) of high amplitude (factor of 15-30). We show that the low-dexamethasone component results from the glucocorticoid receptor-mediated expression of pregnane X receptor and/or constitutively activated receptor which, in turn, are able to transactivate CYP3A4 in a xenobiotic-independent manner. At supramicromolar concentrations (>10 microm), dexamethasone binds to and activates pregnane X receptor thus producing the high-dexamethasone component of CYP3A4 induction. We conclude that, in contrast to the other xenobiotic inducers of CYP3A4, glucocorticoids play a dual role in CYP3A4 expression, first by controlling the expression of PXR and CAR under physiological conditions (submicromolar concentrations) through the classical glucocorticoid receptor pathway, and second by activating the pregnane X receptor under bolus or stress conditions (supramicromolar concentrations).  相似文献   

2.
3.
4.
5.
A previous report demonstrated that treatment of human hepatocytes with phenobarbital, an activator of nuclear receptor constitutive androstane receptor (CAR), increases mRNA levels of an efflux transporter ABCG2, which is involved in the excretion of xenobiotics in liver and intestine. The results suggest that human CAR (hCAR) transactivates human ABCG2 (hABCG2) expression. In this study, we confirmed increase in ABCG2 mRNA levels in human hepatocytes after adenoviral expression of hCAR and treatment with its activator. Reporter assays suggested the existence of an hCAR-responsive element between -8000 and -7485 of hABCG2 promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays identified a DR5 motif (direct repeat separated by five nucleotides) within the region as a binding motif of hCAR/human retinoid X receptor α heterodimer. The introduction of mutations into the DR5 motif resulted in the complete loss of the hCAR-mediated transactivation. Interestingly, human pregnane X receptor, belonging to the same NR1I subfamily as CAR, did not activate any reporter gene containing the DR5 motif. Taken together, our present findings suggest that hCAR transactivates hABCG2 through the DR5 motif located in its distal promoter in human hepatocytes and that the motif prefers hCAR to pregnane X receptor.  相似文献   

6.
The endogenous CYP2B6 gene becomes phenobarbital (PB) inducible in androstenol-treated HepG2 cells either transiently or stably transfected with a nuclear receptor CAR expression vector. The PB induction mediated by CAR is regulated by a conserved 51-base pair element called PB-responsive enhancer module (PBREM) that has now been located between -1733 and -1683 bp in the gene's 5'-flanking region. An in vitro translated CAR acting as a retinoid X receptor alpha heterodimer binds directly to the two nuclear receptor sites NR1 and NR2 within PBREM. In a stably transfected HepG2 cell line, both PBREM and NR1 are activated by PB and PB-type compounds such as chlorinated pesticides, polychlorinated biphenyls and chlorpromazine. In addition to PBREM, CAR also transactivates the steroid/rifampicin-response element of the human CYP3A4 gene in HepG2 cells. Thus, activation of the repressed nuclear receptor CAR appears to be a versatile mediator that regulates PB induction of the CYP2B and other genes.  相似文献   

7.
Cytochrome P450 2C9 (CYP2C9) expression is regulated by multiple nuclear receptors including the constitutive androstane receptor (CAR) and pregnane X receptor (PXR). We compared coregulation of CYP2C9 with CYP2B6 and CYP3A4, prototypical target genes for human CAR and PXR using human hepatocyte cultures treated for three days with the PXR activators clotrimazole, rifampin, and ritonavir; the CAR/PXR activator phenobarbital (PB); and the CAR‐selective agonists CITCO, (6‐(4‐chlorophenyl)imidazo[2,1‐β][1,3]thiazole‐5‐carbaldehyde‐O‐(3,4‐dichlorobenzyl)oxime) and phenytoin. Clotrimazole, rifampin, ritonavir, phenytoin, and phenobarbital induced CYP2C9 consistent with previous findings for CYP3A4. We observed EC50 values of 519 μM (phenobarbital), 11 μM (phenytoin), and 0.75 μM (rifampin), similar to those for CYP3A4 induction. Avasimibe, a potent PXR activator, produced nearly identical concentration‐dependent CYP2C9 and CYP3A4 activity profiles and EC50 values. In 17 donors, rifampin increased mean basal CYP2C9 activity from 59 ± 43 to 143 ± 68 pmol/mg protein/min; fold induction ranged from 1.4‐ to 6.4‐fold. Enzyme activity and mRNA measurements after rifampin, CITCO and PB treatment demonstrated potency and efficacy consistent with CYP2C9 regulation being analogous to CYP3A4 rather than CYP2B6. We demonstrate that hepatic CYP2C9 is differentially regulated by agonists of CAR and PXR, and despite sharing common regulatory mechanisms with CYP3A4 and CYP2B6; this enzyme exhibits an induction profile more closely aligned with that of CYP3A4. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:43–58, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20264  相似文献   

8.
9.
10.
Numerous chemicals increase the metabolic capability of organisms by their ability to activate genes encoding various xenochemical-metabolizing enzymes, such as cytochromes P450 (CYPs), transferases and transporters. For example, natural and synthetic glucocorticoids (agonists and antagonists) as well as other clinically important drugs induce the hepatic CYP2B, CYP2C and CYP3A subfamilies in man, and these inductions might lead to clinically important drug-drug interactions. Only recently, the key cellular receptors that mediate such inductions have been identified. They include nuclear receptors, such as the constitutive androstane receptor (CAR, NR1I3), the retinoid X receptor (RXR, NR2B1), the pregnane X receptor (PXR, NR1I2), and the vitamin D receptor (VDR, NR1I1) and steroid receptors such as the glucocorticoid receptor (GR, NR3C1). There is a wide promiscuity of these receptors in the induction of CYPs in response to xenobiotics. Indeed, this adaptive system appears now as a tangle of networks, where receptors share partners, ligands, DNA response elements and target genes. Moreover, they influence mutually their relative expression. This review is focused on these different pathways controlling human CYP2B6, CYP2C9 and CYP3A4 gene expression, and the cross-talk between these pathways.  相似文献   

11.
12.
13.
The orphan nuclear constitutive androstane receptor (CAR) is proposed to play a central role in the response to xenochemical stress. Identification of CAR target genes in humans has been limited by the lack of a selective CAR agonist. We report the identification of 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO) as a novel human CAR agonist with the following characteristics: (a) potent activity in an in vitro fluorescence-based CAR activation assay; (b) selectivity for CAR over other nuclear receptors, including the xenobiotic pregnane X receptor (PXR); (c) the ability to induce human CAR nuclear translocation; and (d) the ability to induce the prototypical CAR target gene CYP2B6 in primary human hepatocytes. Using primary cultures of human hepatocytes, the effects of CITCO on gene expression were compared with those of the PXR ligand rifampicin. The relative expression of a number of genes encoding proteins involved in various aspects of steroid and xenobiotic metabolism was analyzed. Notably, CAR and PXR activators differentially regulated the expression of several genes, demonstrating that these two nuclear receptors subserve overlapping but distinct biological functions in human hepatocytes.  相似文献   

14.
The pregnane X receptor (PXR) was isolated as a xenobiotic receptor that regulates responses to various xenobiotic agents. In this study, we show that PXR plays an important endobiotic role in adrenal steroid homeostasis. Activation of PXR by genetic (transgene) or pharmacological (ligand, such as rifampicin) markedly increased plasma concentrations of corticosterone and aldosterone, the respective primary glucocorticoid and mineralocorticoid in rodents. The increased levels of corticosterone and aldosterone were associated with activation of adrenal steroidogenic enzymes, including cytochrome P450 (CYP)11a1, CYP11b1, CYP11b2, and 3beta-hydroxysteroid dehydrogenase. The PXR-activating transgenic mice also exhibited hypertrophy of the adrenal cortex, loss of glucocorticoid circadian rhythm, and lack of glucocorticoid responses to psychogenic stress. Interestingly, the transgenic mice had normal pituitary secretion of ACTH and the corticosterone-suppressing effect of dexamethasone was intact, suggesting a functional hypothalamus-pituitary-adrenal axis despite a severe disruption of adrenal steroid homeostasis. The ACTH-independent hypercortisolism in the PXR-activating transgenic mice is reminiscent of the pseudo-Cushing's syndrome in patients. The glucocorticoid effect appears to be PXR specific, as the activation of constitutive androstane receptor in transgenic mice had little effect. We propose that PXR is a potential endocrine disrupting factor that may have broad implications in steroid homeostasis and drug-hormone interactions.  相似文献   

15.
16.
The nuclear receptors, farnesoid X receptor (FXR) and pregnane X receptor (PXR), are important in maintaining bile acid homeostasis. Deletion of both FXR and PXR in vivo by cross-breeding B6;129-Fxrtm1Gonz (FXR-null) and B6;129-Pxrtm1Glaxo-Wellcome (PXR-null) mice revealed a more severe disruption of bile acid, cholesterol, and lipid homeostasis in B6;129-Fxrtm1Gonz Pxrtm1Glaxo-Wellcome (FXR-PXR double null or FPXR-null) mice fed a 1% cholic acid (CA) diet. Hepatic expression of the constitutive androstane receptor (CAR) and its target genes was induced in FXR- and FPXR-null mice fed the CA diet. To test whether up-regulation of CAR represents a means of protection against bile acid toxicity to compensate for the loss of FXR and PXR, animals were pretreated with CAR activators, phenobarbital or 1,4-bis[2-(3,5-dichlorpyridyloxy)]benzene (TCPOBOP), followed by the CA diet. A role for CAR in protection against bile acid toxicity was confirmed by a marked reduction of serum bile acid and bilirubin concentrations, with an elevation of the expression of the hepatic genes involved in bile acid and/or bilirubin metabolism and excretion (CYP2B, CYP3A, MRP2, MRP3, UGT1A, and glutathione S-transferase alpha), following pretreatment with phenobarbital or TCPOBOP. In summary, the current study demonstrates a critical and combined role of FXR and PXR in maintaining not only bile acid but also cholesterol and lipid homeostasis in vivo. Furthermore, FXR, PXR, and CAR protect against hepatic bile acid toxicity in a complementary manner, suggesting that they serve as redundant but distinct layers of defense to prevent overt hepatic damage by bile acids during cholestasis.  相似文献   

17.
18.
Compared with its rodent orthologs, little is known about the chemical specificity of human constitutive androstane receptor (hCAR) and its regulation of hepatic enzyme expression. Phenytoin (PHY), a widely used antiepileptic drug, is a potent inducer of CYP2B6 in primary human hepatocytes, but does not activate human pregnane X receptor (PXR) significantly in cell-based transfection assays at the same concentrations associated with potent induction of CYP2B6. Based on this observation, we hypothesized that PHY may be a selective activator of hCAR. In primary human hepatocytes, expression of CYP2B6 reporter genes containing phenobarbital-responsive enhancer module (PBREM) or PBREM/xenobiotic-responsive enhancer module (XREM) response elements were activated up to 14- and 28-fold, respectively, by 50 microm PHY. By contrast, parallel experiments in HepG2 cell lines co-transfected with an hPXR expression vector did not show increased reporter activity. These results indicated that a PXR-independent pathway, which is retained in primary hepatocytes, is responsible for PHY induction of CYP2B6. Further experiments revealed that PHY effectively translocates hCAR from the cytoplasm into the nucleus in both primary human hepatocytes and CAR(-/-) mice. Compared with vehicle controls, PHY administration significantly increased CYP2B6 reporter gene expression, when this reporter construct was delivered together with hCAR expression vector into CAR(-/-) mice. However, PHY did not increase reporter gene expression in CAR(-/-) mice in the absence of hCAR vector, implying that CAR is essential for mediating PHY induction of CYP2B6 gene expression. Taken together, these observations demonstrate that, in contrast to most of the known CYP2B6 inducers, PHY is a selective activator of CAR in humans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号