首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extragenic suppressor mutations which had the ability to suppress a dnaX2016(Ts) DNA polymerization defect and which concomitantly caused cold sensitivity have been characterized within the dnaA initiation gene. When these alleles (designated Cs, Sx) were moved into dnaX+ strains, the new mutants became cold sensitive and phenotypically were initiation defective at 20 degrees C (J.R. Walker, J.A. Ramsey, and W.G. Haldenwang, Proc. Natl. Acad. Sci. USA 79:3340-3344, 1982). Detailed localization by marker rescue and DNA sequencing are reported here. One mutation changed codon 213 from Ala to Asp, the second changed Arg-432 to Leu, and the third changed codon 435 from Thr to Lys. It is striking that two of the three spontaneous mutations occurred in codons 432 and 435; these codons are within a very highly conserved, 12-residue region (K. Skarstad and E. Boye, Biochim. Biophys. Acta 1217:111-130, 1994; W. Messer and C. Weigel, submitted for publication) which must be critical for one of the DnaA activities. The dominance of wild-type and mutant alleles in both initiation and suppression activities was studied. First, in initiation function, the wild-type allele was dominant over the Cs, Sx alleles, and this dominance was independent of location. That is, the dnaA+ allele restored growth to dnaA (Cs, Sx) strains at 20 degrees C independently of which allele was present on the plasmid. The dnaA (Cs, Sx) alleles provided initiator function at 39 degrees C and were dominant in a dnaA(Ts) host at that temperature. On the other hand, suppression was dominant when the suppressor allele was chromosomal but recessive when it was plasmid borne. Furthermore, suppression was not observed when the suppressor allele was present on a plasmid and the chromosomal dnaA was a null allele. These data suggest that the suppressor allele must be integrated into the chromosome, perhaps at the normal dnaA location. Suppression by dnaA (Cs, Sx) did not require initiation at oriC; it was observed in strains deleted of oriC and which initiated at an integrated plasmid origin.  相似文献   

2.
Boye E  Blinkova A  Walker JR 《Biochimie》2001,83(1):25-32
Mutations in the Escherichia coli gene for initiation of DNA replication, dnaA, which suppress the polymerization defect and growth inhibition caused by temperature-sensitive (Ts) mutations in the polymerization gene, dnaX, are called Cs,Sx. We show here that these mutations, on their own, also cause defects in initiation, including inhibition of initiation at both low (20 degrees C) and high (44 degrees C) temperatures and asynchronous initiation at both the permissive (34 degrees C) and suppression (39 degrees C) temperatures. These findings suggests a relationship between partially defective initiation and suppression of the polymerization defect, both of which occur at 39 degrees C.  相似文献   

3.
Temperature sensitivity of DNA polymerization and growth, resulting from mutation of the tau and gamma subunits of Escherichia coli DNA polymerase III, are suppressed by Cs,Sx mutations of the initiator gene, dnaA. These mutations simultaneously cause defective initiation at 20 degrees C. Efficient suppression, defined as restoration of normal growth rate at 39 degrees C to essentially all the cells, depends on functional oriC. Increasing DnaA activity in a strain capable of suppression, by introducing a copy of the wild-type allele, increasing the suppressor gene dosage or introducing a seqA mutation, reversed the suppression. This suggests that the suppression mechanism depends on reduced activity of DnaACs, Sx. Models that assume that suppression results from an initiation defect or from DnaACs,Sx interaction with polymerization proteins during nascent strand synthesis are proposed.  相似文献   

4.
The product of the dnaA gene is essential for the initiation of chromosomal DNA replication in Escherichia coli K-12. A cold-sensitive mutation, dnaA(Cs), was originally isolated as a putative intragenic suppressor of the temperature sensitivity of a dnaA46 mutant (G. Kellenberger-Gujer, A. J. Podhajska, and L. Caro, Mol. Gen. Genet. 162:9-16, 1978). The cold sensitivity of the dnaA(Cs) mutant was attributed to a loss of replication control resulting in overinitiation of DNA replication. We cloned and sequenced the dnaA gene from the dnaA(Cs) mutant and showed that it contains three point mutations in addition to the original dnaA46(Ts) mutation. The dnaA(Cs) mutation was dominant to the wild-type allele. Overproduction of the DnaA(Cs) protein blocked cell growth. In contrast, overproduction of wild-type DnaA protein reduced the growth rate of cells but did not stop cell growth. Thus, the effect of elevated levels of the DnaA(Cs) protein was quite different from that of the wild-type protein under the same conditions.  相似文献   

5.
The Escherichia coli dnaA73, dnaA721, and dnaA71 alleles, which encode A213D, R432L, T435K substitutions, respectively, were originally isolated as extragenic suppressors of a temperature-sensitive dnaX mutant. As the A213D substitution resides in a domain that functions in ATP binding and the R432L and T435K substitutions affect residues that recognize the DnaA box motif, they might be expected to reduce ATP and specific DNA binding, respectively. Therefore, a major objective was to quantify the biochemical defects of the mutant DnaAs to understand how the altered proteins suppress the temperature-sensitive phenotype of a dnaX mutant. A second purpose was to address the paradox that mutant proteins with substitutions of amino acids essential for recognition of the DnaA box motifs within the E. coli replication origin (oriC) may well be inactive in initiation, yet chromosomal dnaA mutants expressing DnaA proteins with the R432L and T435K substitutions are viable at temperatures from 30 to 39 degrees C. We show biochemically that mutant DnaAs carrying R432L and T435K substitutions fail to bind to the DnaA box sequence. The A213D mutant is sevenfold reduced in its affinity for ATP compared to wild-type DnaA, and its affinity for the DnaA box sequence is also reduced. However, the reduced activity of the A213D mutant in oriC plasmid replication appears to arise from a defect in DnaA oligomerization. Although the T435K mutant fails to bind to the DnaA box sequence, other results suggest that DnaA oligomerization stabilizes the binding of the mutant DnaA to oriC to support its partial activity in initiation in vitro. These results support a model that suppression of dnaX occurs by reducing the frequency of initiation to a manageable level for the mutant DnaX so that viability is maintained.  相似文献   

6.
Multicopy dnaA(Ts) strains carrying the dnaA5 or dnaA46 allele are high-temperature resistant but are cold sensitive for colony formation. The DnaA5 and DnaA46 proteins both have an A184-->V change in the ATP binding motif of the protein, but they also have one additional mutation. The mutations were separated, and it was found that a plasmid carrying exclusively the A184-->V mutation conferred a phenotype virtually identical to that of the dnaA5 plasmid. Strains carrying plasmids with either of the additional mutations behaved like a strain carrying the dnaA+ plasmid. In temperature downshifts from 42 degrees C to 30 degrees C, chromosome replication was stimulated in the multicopy dnaA46 strain. The DNA per mass ratio increased threefold, and exponential growth was maintained for more than four mass doublings. Strains carrying plasmids with the dnaA(A184-->V) or the dnaA5 gene behaved differently. The temperature downshift resulted in run out of DNA synthesis and the strains eventually ceased growth. The arrest of DNA synthesis was not due to the inability to initiate chromosome replication because marker frequency analysis showed high initiation activity after temperature downshift. However, the marker frequencies indicated that most, if not all, of the newly initiated replication forks were stalled soon after the onset of chromosome replication. Thus, it appears that the multicopy dnaA(A184-->V) strains are cold sensitive because of an inability to elongate replication at low temperature. The multicopy dnaA46 strains, on the contrary, exhibit productive initiation and normal fork movement. In this case, the cold-sensitive phenotype may be due to DNA overproduction.  相似文献   

7.
Suppressor mutations located within dnaA can suppress the temperature sensitivity of a dnaZ polymerization mutant, indicating in vivo interaction of the products of these genes. The suppressor allele of dnaA [designated dnaA(SUZ, Cs)] could not be introduced, even at the permissive temperature, by transduction into temperature-sensitive (Ts) dnaC or dnaG recipients; it was transduced into dnaB(Ts) and dnaE(Ts) strains but at very low frequency. Recipient cells which were dnaA+ dnaE(Ts) were killed by the incoming dnaA(SUZ, Cs) allele, and it is presumed that combinations of dnaA(SUZ, Cs) with dnaB(Ts), dnaC(Ts), or dnaG(Ts) are lethal also. In one specific case, the lethality required the presence of three alleles: the incoming dnaA suppressor mutation, the resident dnaA+ gene, and the dnaB(Ts) gene. This was shown by the fact that dnaB(Ts) could readily be introduced into a dnaA(SUZ, Cs) dnaB+ recipient. That is, in the absence of dnaA+, the dnaA suppressor and dnaB(Ts) double mutant was stable. One model to explain these results proposes that the dnaA protein functions not only in initiation but also in the replication complex which contains multiple copies of dnaA and other replication factors.  相似文献   

8.
The kinetics of reinitiation of chromosome replication of eight dnaA(Ts) mutants was investigated in an isogenic set of strains. Five mutants (167, 46, 601, 606 and 5) are classified as reversible, since they can reinitiate at 30 C without protein synthesis, whereas the other three (508, 205, 204) require protein synthesis. In the presence of protein synthesis, reversible mutants initiate one round of replication rapidly after a shift to 30δC, indicating that they contain active or renaturable DnaA protein. The dnaA508 and dnaA204 mutants also reinitiate chromosome replication rapidly, whereas reinitiation is delayed 15–20min in dnaA205. The dnaA508 and dnaA204 mutants might contain active DnaA protein just below the threshold level at 42δC and only require synthesis of small amounts of new DnaA protein before initiation at 30δC, whereas dnaA205 accumulates DnaA protein for some time at 30δC before reaching the initiation threshold. Three of the reversible mutants (5, 601, and 606) exhibited, in addition to the protein synthesis-independent initiation capacity, an RNA synthesis-independent initiation capacity. The thermal stability of these initiation capacities is the same as for mutant DnaA protein, strongly suggesting that mutant DnaA protein is responsible for both.  相似文献   

9.
The dnaA gene is essential for initiation of chromosomal replication in Escherichia coli. A gene homologous with the E. coli dnaA was found in the replication origin region of the Bacillus subtilis chromosome. We have now isolated a temperature sensitive mutant of the B. subtilis dnaA by in vitro mutagenesis of the cloned gene. At a nonpermissive temperature, 49 degrees C, DNA replication stops completely after 60% increase in a rich medium, while cell mass continues to increase exponentially at 2.5 times the rate at 30 degrees C. A ratio of gene frequency between purA (origin marker) and metB (terminus marker) changes gradually from 2.7 at 30 degrees C to 1.0 in 45 min at 49 degrees C, indicating completion of the ongoing replication cycle. Upon the temperature shift down to 30 degrees C after the incubation at 49 degrees C for 60 min, DNA replication resumes without delay, and the purA/metB ratio increases rapidly to 6, i.e. consecutive initiation of more than two rounds of replication. Addition of chloramphenicol at the time of the temperature shift down did not inhibit the increase in the purA/metB ratio, while rifampicin inhibited the re-initiation completely. The mutation is a single base change from C to T in the dnaA gene resulting in an amino acid substitution from Ser to Phe in the DnaA protein. The mutation was responsible for both temperature sensitive growth and the defect in initiation of chromosomal replication. We observed a remarkable correlation between the amount of DnaA protein and the amount of initiation potential accumulated during incubation at the non-permissive temperature.  相似文献   

10.
An RNA polymerase mutant with a single-base-pair change in the rpoC gene affects chromosome initiation control. The mutation, which is recessive, is a G to A transition leading to the substitution of aspartate for glycine at amino acid residue 1033 in the RNA polymerase beta' subunit. The chromosome copy number is increased twofold in the mutant at semipermissive growth temperatures (39 degrees C). In a delta oriC strain, in which chromosome initiation is governed by an F replicon, chromosome copy number is not affected. Plasmid pBR322 copy number is also increased in the mutant at 39 degrees C. The mutation causes a more than fivefold increased expression of the dnaA gene at 39 degrees C. It is conceivable that it is this high DnaA concentration which causes the high chromosome copy number and that the mutant RNA polymerase beta' subunit exerts its effect by altering the expression of the dnaA gene. However, other factors must be affected as well to explain why the RNA polymerase mutant can grow in a balanced fashion with a high chromosome concentration. This is in contrast to wild-type cells, which exhibit higher origin concentrations when DnaA protein is overproduced, but in which the overall DNA concentration is only moderately affected.  相似文献   

11.
The inability of coliphage 186 to infect productively a dnaA(Ts) mutant at a restrictive temperature was confirmed. However, the requirement by 186 for DnaA is indirect, since 186 can successfully infect suppressed dnaA (null) strains. The block to 186 infection of a dnaA(Ts) strain at a restrictive temperature is at the level of replication but incompletely so, since some 20% of the phage specific replication seen with infection of a dnaA+ host does occur. A mutant screen, to isolate host mutants blocked in 186-specific replication but not in the replication of the close relative coliphage P2, which has no DnaA requirement, yielded a mutant whose locus we mapped to the rep gene. A 186 mutant able to infect this rep mutant was isolated, and the mutation was located in the phage replication initiation endonuclease gene A, suggesting direct interaction between the Rep helicase and phage endonuclease during replication. DNA sequencing indicated a glutamic acid-to-valine change at residue 155 of the 694-residue product of gene A. In the discussion, we speculate that the indirect need of DnaA function is at the level of lagging-strand synthesis in the rolling circle replication of 186.  相似文献   

12.
The dnaA204 mutant, one of the so-called irreversible dnaA mutants which cannot reinitiate chromosome replication upon a shift from non-permissive to permissive growth temperature in the absence of protein synthesis, was reinvestigated using flow cytometry and marker frequency analysis. In a temperature downshift experiment and in the presence of protein synthesis the dnaA204 mutant reinitiates chromosome replication very fast. Using a lac promoter-controlled wild type or a dnaA204 mutant gene carried on a plasmid, we have observed instantaneous initiation of replication when synthesis of DnaA protein is induced in the dnaA204 mutant at 42δC. The data indicate that the dnaA204 mutant after a shift to 42δC still contains functional DnaA protein, but that the activity level is below the initiation threshold. Thus, after synthesis of very small amounts of additional DnaA protein, initiation occurs very fast both after a shift to 30δC, and after induction of DnaA protein synthesis at 42 C. A model describing the processing of DnaA protein in mutants and in the wild type Is presented.  相似文献   

13.
By transformation of dnaA null mutant host cells that are suppressed either by an rnh mutation or by chromosomal integration of a mini-R1 plasmid, it was shown that replication of miniplasmids composed of the NR1 minimal replicon had no absolute dependence upon DnaA protein. In addition, the suppression of the dnaA null mutation by the integrated mini-R1, which is an IncFII relative of NR1, was found to be sensitive to the expression of IncFII-specific plasmid incompatibility. This suggests that the integrative suppression by mini-R1 is under the control of the normal IncFII plasmid replication circuitry. Although NR1 replication had no absolute requirement for DnaA, the copy numbers of NR1-derived miniplasmids were lower in dnaA null mutants, and the plasmids exhibited a much reduced stability of inheritance during subculture in the absence of selection. This suggests that DnaA protein may participate in IncFII plasmid replication in some auxiliary way, such as by increasing the efficiency of formation of an open initiation complex at the plasmid replication origin. Such an auxiliary role for DnaA in IncFII replication would be different from that for replication of most other plasmids examined, for which DnaA has been found to be either essential or unimportant.  相似文献   

14.
Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaA(ATP) level. Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter and increased the SeqA protein level in the cell. hsm-1 cells had prolonged origin sequestration, reduced DnaA protein level and reduced DnaA-Reactivating Sequence (DARS)-mediated rejuvenation of DnaA(ADP) to DnaA(ATP) , all of which could contribute to the suppression of RIDA deficiency. Despite of these defects hsm-1 cells were quite similar to wild type with respect to cell cycle parameters. We speculate that since SeqA binding sites might overlap with DnaA binding sites spread throughout the chromosome, excess SeqA could interfere with DnaA titration and thereby increase free DnaA level. Thus, in spite of reduction in total DnaA, the amount of DnaA molecules available for initiation may not be reduced.  相似文献   

15.
Cell size and DNA concentration were measured in Escherichia coli K-12 ET64. This strain carries a dnaA (Ts) mutation that has been suppressed by the insertion of the F plasmid into the chromosome. ET64 can grow in a balanced steady state of exponential growth at the restrictive temperature for its dnaA allele (39 degrees C), in which chromosome replication is controlled by the F plasmid, and at the permissive temperature (30 degrees C), in which chromosome replication is controlled by dnaA-oriC. When cells grown at the indicated temperatures were compared, it was observed that at 39 degrees C, the cell mass increased and the amount of cellular DNA decreased slightly; therefore, the DNA concentration was strongly reduced. These changes can neither be explained by the reduction of the generation time (which is only 10-15%) nor from observed changes in the replication time and in the time between DNA synthesis termination and cell division. Variations were mainly due to the increase in cell mass per origin of replication, at initiation, in cells grown at 39 degrees C. Control of chromosome replication by the F plasmid appears to be the reason for the increase in the initiation mass. Other possible causes, such as the modification of growth temperature, the generation time, or both, were discarded. These observations suggest that at one growth rate, the F plasmid replicates at a particular cell mass to F particle number ratio, and that this ratio is higher than the cell mass to oriC ratio at the initiation of chromosome replication. This fact might be significant to coordinate the replication of two different replicons in the same cell.  相似文献   

16.
17.
18.
The DnaA protein determines the initiation mass of Escherichia coli K-12   总被引:40,自引:0,他引:40  
DNA replication was studied in a dnaA(Ts) strain containing a plasmid with the dnaA+ gene under plac control. At 42 degrees C, initiation of DNA replication was totally dependent upon the gratuitous inducer isopropyl beta-D-thiogalactopyranoside (IPTG). Flow cytometric measurements showed that at 13% induction of the lac promoter the growth rate, cell size, DNA content, and timing of initiation of DNA replication were indistinguishable from those observed in a wild-type control cell. Higher levels of induction resulted in initiations earlier in the cell cycle and a corresponding increase in the time from initiation to termination. We conclude that the concentration of DnaA protein determines the time of initiation and thereby the initiation mass. With an induction level equal to or above 13%, the synchrony of multiple initiations within one cell was close to that found in a wild-type control cell, showing that a cyclic variation in DnaA content is not necessary for a high degree of synchrony.  相似文献   

19.
Initiation of DNA replication from oriC in Escherichia coli takes place at a specific time in the cell division cycle, whether the origin is located on a chromosome or a minichromosome, and requires participation of the product of the dnaA gene. The effects of overproduction of DnaA protein on the cell cycle specificity of the initiation event were determined by using minichromosome replication as the assay system. DnaA protein was overproduced by inducing the expression of plasmid-encoded dnaA genes under control of either the ptac or lambda pL promoter. Induction of DnaA protein synthesis caused a burst of minichromosome replication in cells at all ages in the division cycle. The magnitude of the burst was consistent with the initiation of one round of replication per minichromosome in all cells. The replication burst was followed by a period of reduced minichromosome replication, with the reduction being greater at 30 than at 41 degrees C. The results support the idea that the DnaA protein participates in oriC replication at a stage that is limiting for initiation. Excess DnaA protein enabled all cells to achieve the state required for initiation of DNA polymerization by either effecting or overriding the normal limiting process.  相似文献   

20.
dnaA acts before dnaC in the initiation of DNA replication   总被引:9,自引:4,他引:5       下载免费PDF全文
We constructed a double mutant of Escherichia coli K-12 carrying dnaA(Ts) and dnaC(Cs) lesions. In this mutant DNA synthesis proeceeds normally at 32 degrees C and initiation is inhibited at both 41 and 20 degrees C. By shifting this culture grown at 32 degrees C to the two restrictive temperatures in different time sequences and assaying protein and DNA synthesis of cells growing at different temperatures, we found that dnaA and dnaC genes work independently with dnaA acting before dnaC. While preparing special strains for this work, we also showed that the order of genes in the neighborhood of dnaA is dnaA-tnaA-phoS-ilv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号