首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Matsumura  N Banba  S Motohashi  Y Hattori 《Life sciences》1999,65(12):PL129-PL135
Monocytes and T-lymphocytes, both of which play a pivotal role in immune/inflammatory responses, can be attracted from the circulation into tissues by monocyte chemoattractant protein-1 (MCP-1), and monocytes can be further activated by colony-stimulating factors (CSFs), granulocyte/macrophage CSF (GM-CSF) or macrophage CSF (M-CSF). We examined whether either interleukin-6 (IL-6) or transforming growth factor-beta (TGF-beta), both of which are produced by thyroid follicular cells (TFC), can regulate the production of MCP-1 or CSF(s) in human TFC. IL-6, being effective only in the presence of soluble IL-6 receptor (sIL-6R), stimulated the expression of both MCP-1 and M-CSF, but was inhibitory on GM-CSF expression. On the other hand, TGF-beta stimulated the expression of both MCP-I and GM-CSF, but suppressed M-CSF expression. These results suggest a possible role of IL-6 or TGF-beta on the initiation and/or modulation of thyroid immune/inflammatory responses via MCP-1 production and differential production of GM-CSF or M-CSF by TFC.  相似文献   

2.
The effect of IL-3, granulocyte-macrophage (GM)-CSF and macrophage (M)-CSF on Candida albicans growth inhibition by human peripheral blood monocytes was investigated. By using a radiolabel microassay developed in our laboratory that makes use of the incorporation of [3H]glucose into residual C. albicans, we demonstrated that rGM-CSF and rIL-3 effectively enhanced human monocyte-mediated anticandidal activity. Incubation for 24 h with either GM-CSF or IL-3 significantly enhanced monocyte antifungal responses down to 0.01 U/ml. M-CSF, at higher concentrations of 10 U/ml, could also enhance monocyte function but to a smaller degree. None of the CSF interfered directly with fungal growth, even up to 1000 U/ml. Because IFN-gamma is also a known monocyte activator, its effect on monocytes was also assessed. Monocytes were first cultured in medium for several days and then further incubated with each of the cytokines. Monocytes aged in medium were found to lose their spontaneous anticandidal activity. Such aged monocytes did not develop anticandidal activity in response to IFN-gamma but did in response to GM-CSF or IL-3. To further elucidate this difference, fresh monocytes were continuously cultured with or without cytokines for 1 to 5 days before assessing their anticandidal activity. Monocytes cultured in IFN-gamma progressively lost their activity by 2 days but monocytes in GM-CSF or IL-3 maintained their high level of anticandidal activity throughout the whole length of culture. Therefore, GM-CSF and IL-3 not only enhanced fresh monocyte anticandidal activity, but maintained monocyte function for a longer period. These results suggest that GM-CSF and IL-3 may act on monocytes via a different pathway than does IFN-gamma.  相似文献   

3.
TNF skews monocyte differentiation from macrophages to dendritic cells   总被引:4,自引:0,他引:4  
Monocytes represent a large pool of circulating precursors of APCs, both macrophages and dendritic cells (DCs). It is thus important to identify the mechanisms by which microenvironment regulates monocyte differentiation. We have previously shown that, upon contact with resting stromal cells such as fibroblasts, monocytes differentiate into macrophages in an IL-6/M-CSF-dependent fashion. Yet, in the inflamed tissue, monocytes need to yield DCs for the adaptive immunity to be induced. Inasmuch as TNF and IL-1 are present at the site of inflammation, we tested their capacity to modulate monocyte differentiation into either macrophages or DCs. TNF, but not IL-1, induce monocytes to become DCs despite the presence of fibroblasts. TNF-induced DCs contain Langerin-positive cells and are able to induce allogenic T cell proliferation. Then, TNF was found to decrease the expression and internalization of the M-CSF receptor, thus overriding the IL-6/M-CSF pathway. Thus, TNF facilitates the induction of adaptive immunity by promoting DC differentiation not only from CD34+ progenitors but also from CD14+ blood precursors.  相似文献   

4.
Enhancement of human monocyte tumoricidal activity by recombinant M-CSF   总被引:8,自引:0,他引:8  
Activated monocytes are an important component of immunologic defense against neoplastic disease. A variety of agents capable of inducing tumoricidal activity have been described, including bacterial LPS, IFN-gamma, IL-1, IL-2, TNF, and GM-CSF. We now show that pretreatment of monocytes with recombinant human macrophage-specific colony stimulating factor (M-CSF) augments the tumoricidal activity of human peripheral blood monocytes induced by other activating agents. Monocytes were preincubated for three days with M-CSF at 10(3) U/ml, washed, and treated for an additional two days with secondary activators. Tumoricidal activity was measured in a 6-h 51Cr-release assay using NK-resistant WEHI 164 cells that had been treated with actinomycin D. Pretreatment of monocytes with M-CSF significantly increased tumoricidal activity induced by LPS, IFN gamma, LPS plus IFN gamma, and LPS plus PMA. Pretreatment with IL-1, IL-2, IL-3, IL-4, or GM-CSF was not as effective as M-CSF in increasing tumoricidal activity. Enhanced tumoricidal activity was directly correlated to the increased TNF production resulting from M-CSF pretreatment. TNF antiserum completely blocked tumoricidal activity, demonstrating that TNF was responsible for the M-CSF-mediated increase in tumor cell lysis. M-CSF pretreatment also enhanced non-TNF mediated tumoricidal activity by monocytes, as seen by increased killing of the TNF-resistant target P815. This study demonstrated that in addition to the role of M-CSF in the proliferation and differentiation of monocyte/macrophage precursors, M-CSF also augments an effector function of mature blood monocytes.  相似文献   

5.
Human macrophages express chemokine receptors that act as coreceptors for human immunodeficiency virus type 1 (HIV-1) and are major targets for HIV-1 infection in vivo. The effects of cytokines on HIV-1 infection of macrophages and on the expression of CCR5, the principal coreceptor for macrophage-tropic viruses, have now been investigated. Expression of CCR5 on the surface of freshly isolated human monocytes was virtually undetectable by flow cytometry with the monoclonal antibody 5C7. However, after culture of monocytes for 48 h in serum-free medium, approximately 30% of the resulting macrophages expressed CCR5 and the cells were susceptible to infection by macrophage-tropic HIV-1. Addition of either macrophage colony-stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) to the cultures markedly increased both the extent of HIV-1 entry and replication as well as surface expression of CCR5. In contrast, addition of the T-helper 2 (Th2) cell-derived cytokine interleukin-4 (IL-4) or IL-13 prevented the expression of CCR5 induced by culture in medium alone, and IL-4 inhibited virus entry, replication, and cytopathicity under these conditions. IL-4 or IL-13 also prevented the stimulatory effects of M-CSF or GM-CSF on CCR5 expression as well as HIV-1 entry and replication. In addition, IL-4 reversed the increase in CCR5 expression induced by pretreatment of cells with M-CSF. Although IL-10 also inhibits HIV-1 replication in macrophages, it did not suppress surface CCR5 expression induced by colony-stimulating factors. These results indicate that the cytokine environment determines the susceptibility of macrophages to HIV-1 infection by various mechanisms, one of which is the regulation of HIV-1 coreceptor expression.  相似文献   

6.
We have investigated the regulation of expression of cell-surface and soluble CD23 (sCD23) by purified human peripheral blood monocytes and in cultures of human whole blood. IL-3, IL-4, and GM-CSF were found to markedly enhance the expression of CD23 on the surface of elutriated monocytes and to increase levels of sCD23 in monocyte-culture supernatants. The induction of CD23 expression by monocytes was confirmed at the mRNA level by Northern blot analysis. The ability of GM-CSF, IL-3, or IL-4 to induce cell-surface CD23 on monocytes was inhibited by specific neutralizing antibodies to the corresponding cytokine. IL-3 and GM-CSF induced maximal surface CD23 expression on monocytes by 24 to 48 h, followed by a slight decline at 72 and 96 h. In contrast, IL-4 induced a progressive increase in monocyte CD23 expression that reached a maximum at approximately 72 h. IL-4, GM-CSF, and IFN-gamma increased both surface and soluble CD23 expression by the monocytic cell line U937, whereas IL-3 had no effect. The plasma from fresh human whole blood or nonstimulated whole blood cultured for 24 to 48 h contained detectable sCD23, and addition of IL-3, IL-4, or GM-CSF to these cultures resulted in increased levels of this molecule. Two-color flow cytometry revealed that IL-3, but not GM-CSF, also enhanced CD23 expression by B cells enriched from PBMC, although the effect of IL-3 was weak in comparison with that of IL-4. These findings may have important implications for the in vivo therapeutic use of these cytokines.  相似文献   

7.
Despite its potent ability to inhibit proinflammatory cytokine synthesis, interleukin (IL)-10 has a marginal clinical effect in rheumatoid arthritis (RA) patients. Recent evidence suggests that IL-10 induces monocyte/macrophage maturation in cooperation with macrophage-colony stimulating factor (M-CSF). In the present study, we found that the inducible subunit of the IL-10 receptor (IL-10R), type 1 IL-10R (IL-10R1), was expressed at higher levels on monocytes in RA than in healthy controls, in association with disease activity, while their expression of both type 1 and 2 tumour necrosis factor receptors (TNFR1/2) was not increased. The expression of IL-10R1 but not IL-10R2 was augmented on monocytes cultured in the presence of RA synovial tissue (ST) cell culture supernatants. Cell surface expression of TNFR1/2 expression on monocytes was induced by IL-10, and more efficiently in combination with M-CSF. Two-color immunofluorescence labeling of RA ST samples showed an intensive coexpression of IL-10R1, TNFR1/2, and M-CSF receptor in CD68+ lining macrophages. Adhered monocytes, after 3-day preincubation with IL-10 and M-CSF, could produce more IL-1β and IL-6 in response to TNF-α in the presence of dibutyryl cAMP, as compared with the cells preincubated with or without IL-10 or M-CSF alone. Microarray analysis of gene expression revealed that IL-10 activated various genes essential for macrophage functions, including other members of the TNFR superfamily, receptors for chemokines and growth factors, Toll-like receptors, and TNFR-associated signaling molecules. These results suggest that IL-10 may contribute to the inflammatory process by facilitating monocyte differentiation into TNF-α-responsive macrophages in the presence of M-CSF in RA.  相似文献   

8.
9.

Background

Studies from our laboratory have shown that human alveolar macrophages (AM) and bronchial epithelial cells (HBEC) exposed to ambient particles (PM10) in vitro increase their production of inflammatory mediators and that supernatants from PM10-exposed cells shorten the transit time of monocytes through the bone marrow and promote their release into the circulation.

Methods

The present study concerns co-culture of AM and HBEC exposed to PM10 (EHC-93) and the production of mediators involved in monocyte kinetics measured at both the mRNA and protein levels. The experiments were also designed to determine the role of the adhesive interaction between these cells via the intercellular adhesion molecule (ICAM)-1 in the production of these mediators.

Results

AM/HBEC co-cultures exposed to 100 μg/ml of PM10 for 2 or 24 h increased their levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), M-CSF, macrophage inflammatory protein (MIP)-1β, monocyte chemotactic protein (MCP)-1, interleukin (IL)-6 and ICAM-1 mRNA, compared to exposed AM or HBEC mono-cultures, or control non-exposed co-cultures. The levels of GM-CSF, M-CSF, MIP-1β and IL-6 increased in co-cultured supernatants collected after 24 h exposure compared to control cells (p < 0.05). There was synergy between AM and HBEC in the production of GM-CSF, MIP-1β and IL-6. But neither pretreatment of HBEC with blocking antibodies against ICAM-1 nor cross-linking of ICAM-1 on HBEC blocked the PM10-induced increase in co-culture mRNA expression.

Conclusion

We conclude that an ICAM-1 independent interaction between AM and HBEC, lung cells that process inhaled particles, increases the production and release of mediators that enhance bone marrow turnover of monocytes and their recruitment into tissues. We speculate that this interaction amplifies PM10-induced lung inflammation and contributes to both the pulmonary and systemic morbidity associated with exposure to air pollution.  相似文献   

10.
Foey AD  Feldmann M  Brennan FM 《Cytokine》2000,12(10):1496-1505
Interleukin 10 is a potent anti-inflammatory and immunomodulatory cytokine. Little is known regarding its induction in monocytes/macrophages, however LPS, a reproducible trigger of IL-10, is augmented by direct contact with T cells. In this context, the role of CD40-ligation is investigated. In the rheumatoid synovium, IL-10 is produced by tissue macrophages. Monocytes primed with M-CSF, a cytokine present in rheumatoid joints, produced IL-1beta, TNF-alpha and IL-10 upon CD40-ligation at an IL-1: TNF-alpha: IL-10 ratio of 10:0.5:1. IFN-gamma-primed monocytes, however, predominantly produced TNF-alpha and IL-1beta. Both differentiated monocytes display an endogenous IL-10 activity regulatable by CD40 stimulation. Additionally, these monocytes display differential control by exogenous and endogenous IL-1 and TNF-alpha. M-CSF-primed monocyte IL-10 production was dependent on endogenous TNF-alpha and, to a lesser extent, IL-1, whereas IFN-gamma-primed monocytes were partially dependent on endogenous IL-1. The addition of exogenous IL-1 augments CD40 induced IL-10 production by IFN-gamma-primed monocytes. These data indicate that CD40 ligation regulates cell contact mediated macrophage IL-10 and that the route of differentiation determines the cytokine profile.  相似文献   

11.
IL-4 inhibits the expression of IL-8 from stimulated human monocytes   总被引:19,自引:0,他引:19  
Peripheral blood monocytes are important mediators of inflammation via the generation of various bioactive substances, including the recently isolated and cloned chemotactic peptide IL-8. Through cytokine networking, monocyte-derived cytokines are capable of inducing IL-8 expression from non-immune cells. IL-4, a B and T lymphocyte stimulatory factor, has recently been shown to inhibit monocyte/macrophage function, including the ability to suppress monocyte-generated cytokines. We describe the in vitro inhibition of IL-8 gene expression and synthesis from LPS, TNF, and IL-1 stimulated peripheral blood monocytes by IL-4. IL-4 suppressed IL-8 production from stimulated monocytes in a dose-dependent fashion, with partial suppression observed at IL-4 concentrations as low as 10 pg/ml. The IL-4-induced suppressive effects were observed even when IL-4 was administered 2 h post-LPS-stimulation. The IL-4-induced inhibition of IL-8 mRNA expression was dependent on protein synthesis, as the suppressive effects of IL-4 were significantly negated by the addition of cycloheximide. Our findings suggest that IL-4 may be an important endogenous regulator of inflammatory cell recruitment, and adds further support to the potential role of IL-4 as a down-regulator of monocyte immune function.  相似文献   

12.
There is growing evidence that apoptotic neutrophils have an active role to play in the regulation and resolution of inflammation following phagocytosis by macrophages and dendritic cells. However, their influence on activated blood monocytes, freshly recruited to sites of inflammation, has not been defined. In this work, we examined the effect of apoptotic neutrophils on cytokine production by LPS-activated monocytes. Monocytes stimulated with LPS in the presence of apoptotic neutrophils for 18 h elicited an immunosuppressive cytokine response, with enhanced IL-10 and TGF-beta production and only minimal TNF-alpha and IL-1beta cytokine production. Time-kinetic studies demonstrated that IL-10 production was markedly accelerated in the presence of apoptotic neutrophils, whereas there was a sustained reduction in the production of TNF-alpha and IL-1beta. This suppression of proinflammatory production was not reversible by depletion of IL-10 or TGF-beta or by addition of exogenous IFN-gamma. It was demonstrated, using Transwell experiments, that monocyte-apoptotic cell contact was required for induction of the immunosuppressive monocyte response. The response of monocytes contrasted with that of human monocyte-derived macrophages in which there was a reduction in IL-10 production. We conclude from these data that interaction between activated monocytes and apoptotic neutrophils creates a unique response, which changes an activated monocyte from being a promoter of the inflammatory cascade into a cell primed to deactivate itself and other cells.  相似文献   

13.
Tumor-derived immunosuppressive factors contribute to the evasion of malignant cells from the immune response, partially by hampering dendritic cell (DC) differentiation. Here, we analyze whether soluble mediators released by the most frequent histological types of non-small cell lung carcinoma, squamous cell carcinoma (SCC), and adenocarcinoma (AD) cells, affect the development and functionality of DC. Monocytes from healthy donors were differentiated in vitro into DC with granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4, in the absence or presence of soluble factors (SF) from SCC or AD cell lines. Monocytes were differentiated in parallel into macrophages (MΦ s) with macrophage colony-stimulating factor (M-CSF). SF-treated DC were phenotypically and functionally more similar to MΦ s than to untreated DC [control DC (Ctrl-DC)]. Both tumors increased myelomonocytic markers (CD14, CD16, CD32, and CD163) and impaired CD1a expression on DC. SF-treated DC increased their endocytic capacity, and released higher levels of IL-6, IL-10, and lower levels of IL-12, compared to Ctrl-DC. SF-treated DC were poor stimulators in mixed lymphocyte reactions, and naïve CD4+ T lymphocytes stimulated by SF-treated DC secreted lower levels of interferon (IFN)-γ and higher amounts of IL-10 than controls. In contrast to AD, the effects caused by SCC were mostly abolished by IL-6 neutralization during monocyte differentiation. However, tumor-derived prostanoid blockade recovered the IFN-γ levels secreted by lymphocytes stimulated with SF-treated DC, whereas prostanoid/IL-6 or prostanoid/IL-10 blockade decreased IL-10 production only by SCC-DC-stimulated lymphocytes. Thus, we provide evidence that lung SCC and AD cause comparable deficiencies on DC in vitro, skewing monocyte differentiation from DC to MΦ -like cells, but most of these changes occurred via different mediators.  相似文献   

14.
The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis.  相似文献   

15.
IgG deposition at tissue sites characteristically leads to macrophage accumulation and organ injury. Although the mechanism by which deposited IgG induces tissue injury is not known, we have recently demonstrated that deposited IgG stimulates the release of IL-8 and monocyte chemoattractant protein-1 from normal human monocytes, which may drive inflammation. Since IgG also induces macrophage accumulation in these diseases, we hypothesized that deposited IgG protects monocytes from apoptosis. As an in vitro model of the effect of deposited IgG on monocyte survival, monocyte apoptosis was studied after FcgammaR cross-linking. Monocytes cultured on immobilized IgG, which induces FcgammaR cross-linking, were protected from apoptosis, whereas monocytes cultured with equivalent concentrations of F(ab')2 IgG or 50 times higher concentrations of soluble IgG, neither of which induces FcgammaR cross-linking, were not protected. Moreover, this protection was transferable, as supernatants from immobilized IgG-stimulated monocytes protected freshly isolated monocytes from apoptosis and contained functional M-CSF, a known monocyte survival factor. M-CSF mediated the monocyte survival induced by FcgammaR cross-linking, as neutralizing anti-human M-CSF Abs blocked the monocyte protection provided by either immobilized IgG or IgG-stimulated monocyte supernatants. These findings demonstrate a novel mechanism by which deposited IgG targets tissue macrophage accumulation through FcgammaR-mediated M-CSF release. This pathway may play an important role in promoting and potentiating IgG-mediated tissue injury.  相似文献   

16.
Recent studies have shown that normal human alveolar macrophages and blood monocytes, as well as HL-60 and U937 monocyte cell lines, newly express IL-2R after stimulation with rIFN-gamma or LPS. In addition, macrophages transiently express IL-2R in vivo during immunologically mediated diseases such as pulmonary sarcoidosis and allograft rejection. We therefore investigated in vitro factors that modulate macrophage expression of IL-2R. IL-2R were induced on normal alveolar macrophages, blood monocytes, and HL-60 cells using rIFN-gamma (24 to 48 h at 240 U/ml), and cells were cultured for an additional 12 to 24 h with rIL-2 (100 U/ml), recombinant granulocyte-macrophage CSF (rGM-CSF, 1000 U/ml), rGM-CSF plus indomethacin (2 X 10(-6) M), PGE2 (0.1 to 10 ng/ml), 1 X 10(-6) M levels of caffeine, theophylline, and dibutyryl cyclic AMP, or medium alone. IL-2R expression was quantitated by cell ELISA (HL-60 cells) or determined by immunoperoxidase staining (alveolar macrophages, blood monocytes, and HL-60 cells), using anti-Tac and other CD25 mAb. PGE production was assayed by RIA. We found greater than 95% of alveolar macrophages, monocytes, and HL-60 cells expressed IL-2R after rIFN-gamma treatment and remained IL-2R+ in the presence of IL-2R or medium alone. By comparison, greater than 95% of cells induced to express IL-2R became IL-2R- after addition of rGM-CSF, and the culture supernatants from GM-CSF-treated cells contained increased levels of PGE. This inhibition of macrophage IL-2R expression by rGM-CSF was blocked by indomethacin, and IL-2R+ macrophages became IL-2R- after addition of PGE2 alone. These findings indicate GM-CSF down-regulates IL-2R expression by human macrophages via induction of PGE synthesis. Moreover, a similar down-regulation of IL-2R expression was seen after stimulation with caffeine, theophylline, or dibutyryl cyclic AMP. Hence, GM-CSF, PGE, and other pharmacologic agents that act to increase intracellular levels of cAMP may play a modulatory role, antagonistic to that of IFN-gamma on cellular expression of IL-2R by human inflammatory macrophages in vivo.  相似文献   

17.
18.
This study demonstrates a synergistic action of prostaglandin E and GM-CSF which causes the release of pro-tolerant cytokines in two monocyte cell lines: U937 and ML-1. The prostaglandin effect is cyclic AMP dependent since stimulators of adenyl cyclase such as forskolin (fsk) can replace PGE. Fsk and GM-CSF combinations raised messenger RNA for IL-10, interleukin-1 receptor antagonist (IL-1ra), and CD14 as well as the released proteins. Effective levels of interleukin 12 are reduced. In these respects, the monocyte cells resemble the alternatively activated or tumour associated macrophages. A differential pattern in co-stimulatory molecule expression is seen; CD80 is unchanged but CD86 is markedly elevated and such a change is not seen in the alternatively activated macrophage but has been previously reported in monocytes resident in the non-inflamed gut. Control of leukocyte responses by two agents acting in synergy could be effective in critical situations such as discrimination between pathogens and commensal bacteria, etc. Monocytes modified in such a way could provide a pro-tolerant environment (high IL-10, low IL-12) for antigen presentation by dendritic cells and thus may contribute to a normally permissive milieu, e.g., for food absorption.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号