首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ozone at 0.25, 0.40, and 1.00 ppm on Listeria monocytogenes were evaluated in distilled water and phosphate-buffered saline. Differences in sensitivity to ozone were found to exist among the six strains examined. Greater cell death was found following exposure at lower temperatures. Early stationary-phase cells were less sensitive to ozone than mid-exponential- and late stationary-phase cells. Ozonation at 1.00 ppm of cabbage inoculated with L. monocytogenes effectively inactivated all cells after 5 min. The abilities of in vivo catalase and superoxide dismutase to protect the cells from ozone were also examined. Three listerial test strains were inactivated rapidly upon exposure to ozone. Both catalase and superoxide dismutase were found to protect listerial cells from ozone attack, with superoxide dismutase being more important than catalase in this protection.  相似文献   

2.
The antioxidant enzymes, catalase and superoxide dismutase, are inactivated upon exposure to ozone. In this study, the mechanism of this inactivation was examined using catalase as a model system. The data show that the inactivation of catalase is dependent on ozone concentration, time of exposure, and pH. Loss of catalase activity is accompanied with loss of the heme spectra. Tiron, desferal-Mn, trolox-c, and pyruvate protect the enzyme against ozone inactivation. SOD is less effective due to its inactivation by ozone. On the other hand, alcohols do not provide significant protection. The data suggest the possible involvement of superoxide radicals in the inactivation of catalase by ozone.  相似文献   

3.
We have previously demonstrated that a 2H exposure of cultured pulmonary endothelial cells to ozone (0.0-1.0 ppm) in-vitro resulted in a concentration-dependent reduction of endothelial prostacyclin production (90% decrease at the 1.0 ppm level). Ozone-exposed endothelial cells, incubated with 20 uM arachidonate, also demonstrated a significant inhibition of prostacyclin synthesis. To further examine the mechanisms of the inhibition of prostacyclin synthesis, bovine pulmonary endothelial cells were exposed to 1.0 ppm ozone for 2H. A significant decrease in prostacyclin synthesis was found within 5 min of exposure (77 +/- 36% of air-exposed control values, p less than 0.05). Endothelial prostacyclin synthesis returned to baseline levels by 12H after ozone exposure, a time point which was similar to the recovery time of unexposed endothelium treated with 0.5 uM acetylsalicylic acid. Incubation of endothelial cells, previously exposed to 1.0 ppm ozone for 2 hours, with 4 uM PGH2 resulted in restoration of essentially normal prostacyclin synthesis. When endothelial cells were co-incubated with catalase (5 U/ml) during ozone exposure, no inhibition of prostacyclin synthesis was observed. Co-incubation with either heat-inactivated catalase or superoxide dismutase (10 U/ml) did not affect the ozone-induced inhibition of prostacyclin synthesis. These data suggest that H2O2 is a major toxic species produced in endothelial cells during ozone exposure and responsible for the inhibition of endothelial cyclooxygenase activity.  相似文献   

4.
Oxyradicals have been implicated in ozone (O3) toxicity and in other oxidant stress. In this study, we investigated the effects of O3 on the biosynthesis of the antioxidant enzymes catalase and superoxide dismutase in Escherichia coli to determine their role in the defense against ozone toxicity. Inhibition of growth and loss of viability were observed in cultures exposed to ozone. Results also showed an increase in the activities of catalase and superoxide dismutase in cultures exposed to ozone, which was shown to be due to true induction rather than activation of preexisting apoproteins. Cessation of O3 exposure resulted in 30 min of continual high rate of catalase biosynthesis followed by a gradual decrease in the level of the enzyme approaching that of control cultures. This decrease was attributed to a concomitant cessation of de novo enzyme synthesis and dilution of preexisting enzyme by cellular growth. Ozonation of cell-free extracts showed that superoxide dismutase and catalase are subject to oxidative inactivation by ozone. In vivo induction of these enzymes may represent an adaptive response evolved to protect cells against ozone toxicity.  相似文献   

5.
We have previously demonstrated that a 2H exposure of cultured pulmonary endothelial cells to ozone (0.0–1.0 ppm) resulted in a concentration-dependent reduction of endothelial prostacyclin production (90% decrease at the 1.0 ppm level). Ozone-exposed endothelial cells, incubated with 20 uM arachidonate, also demonstrated a significant inhibition of prostacyclin synthesis. To further examine the mechanisms of the inhibition of prostacyclin synthesis, bovine pulmonary endothelial cells were exposedto 1.0 ppm ozone for 2H. A significant decease in protacyclin synthesis was found within 5 min of exposure (77 ± 36% of air-exposed control values, p < 0.05). Endothelial prostacyclin synthesis returned to baseline levels by 12H after ozone exposure, a time point which was similar to the recovery time of unexposed endothelium treated with 0.5 uM acetylsalicylic acid. Incubation of endothelial cells, previously exposed to 1.0 ppm ozone for 2 hours, with 4 uM PGH2 resulted in restoration of essentially normal prostacyclin synthesis. When endothelial cells were co-incubated with catalase (5U/ml) during ozone exposure, no inhibition of prostacycline synthesis was observed. Co-incubation with either heat-inactivated catalase or superoxide dismutase (10U/ml) did not affect the ozone-induced inhibition of prostacycline synthesis. These data suggest that H2O2 is a major toxic species produced in endothelial cells during ozone exposure and responsible for the inhibiton of endothelial cyclooxygenase activity.  相似文献   

6.
Ozone-induced inactivation of antioxidant enzymes   总被引:2,自引:0,他引:2  
Lee YK  Mok Kim S  Han S 《Biochimie》2003,85(10):947-952
Ozone is an air pollutant that damages a variety of biomolecules. We investigated ozone-induced inactivation of three major antioxidant enzymes. Cu/Zn superoxide dismutase was inactivated by ozone in a concentration-dependent manner. The concentration of ozone for 50% inactivation was approximately 45 microM when 10 microM Cu/Zn superoxide dismutase was incubated for 30 min in the presence of ozone. SDS-polyacrylamide gel electrophoresis (PAGE) showed that the enzyme was randomly fragmented. Both ascorbate and glutathione were very effective in protecting Cu/Zn superoxide dismutase from ozone-induced inactivation. The other two enzymes, catalase and glutathione peroxidase, were much more resistant to ozone than Cu/Zn superoxide dismutase. The ozone concentrations for 50% inactivation of 10 microM catalase and glutathione peroxidase were 500 and 240 microM, respectively. SDS-PAGE demonstrated that ozone caused formation of high molecular weight aggregates in catalase and dimerization in glutathione peroxidase. Glutathione protected catalase and glutathione peroxidase from ozone but the effective concentrations were much higher than that for Cu/Zn superoxide dismutase. Ascorbate was almost ineffective. The result suggests that, among the three antioxidant enzymes, Cu/Zn superoxide dismutase is a major target for ozone-induced inactivation and both glutathione and ascorbate are very effective in protecting the enzyme from ozone.  相似文献   

7.
Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean roots. Increased superoxide dismutase and decreased catalase activities were observed rapidly, by 10 min upon inoculation of cells onto intact bean roots. Catalase specific activity increased with time to peak at 12 h before declining. By 48 h, the cells displayed this low catalase but maintained high superoxide dismutase specific activities. Catalase with a low specific activity and a high superoxide dismutase activity also were present in extracts of cells obtained from 7-day-old roots colonized from inoculum applied to seed. This specific activity of superoxide dismutase of root-contacted cells was about fourfold-higher in comparison to cells grown on rich medium, whereas the specific activity for catalase was reduced about fivefold. A single catalase isozyme, isozyme A, and one isozyme of superoxide dismutase, isozyme 1, were detected during growth of the bacteria on root surface components and during exposure of cells to intact bean roots for 1 h. An additional catalase, isozyme B, was detected from bacteria after exposure to the intact bean roots for 12 h. Catalase isozyme A and superoxide dismutase isozyme 1 were located in the cytoplasm and catalase band B was located in the membrane of P. putida.  相似文献   

8.
Factors Related to the Oxygen Tolerance of Anaerobic Bacteria   总被引:10,自引:5,他引:5       下载免费PDF全文
The effect of atmospheric oxygen on the viability of 13 strains of anaerobic bacteria, two strains of facultative bacteria, and one aerobic organism was examined. There were great variations in oxygen tolerance among the bacteria. All facultative bacteria survived more than 72 h of exposure to atmospheric oxygen. The survival time for anaerobes ranged from less than 45 min for Peptostreptococcus anaerobius to more than 72 h for two Clostridium perfringens strains. An effort was made to relate the degree of oxygen tolerance to the activities of superoxide dismutase, catalase, and peroxidases in cell-free extracts of the bacteria. All facultative bacteria and a number of anaerobic bacteria possessed superoxide dismutase. There was a correlation between superoxide dismutase activity and oxygen tolerance, but there were notable exceptions. Polyacrylamide gel electropherograms stained for superoxide dismutase indicated that many of the anaerobic bacteria contained at least two electrophoretically distinct enzymes with superoxide dismutase activity. All facultative bacteria contained peroxidase, whereas none of the anaerobic bacteria possessed measurable amounts of this enzyme. Catalase activity was variable among the bacteria and showed no relationship to oxygen tolerance. The ability of the bacteria to reduce oxygen was also examined and related to enzyme content and oxygen tolerance. In general, organisms that survived for relatively long periods of time in the presence of oxygen but demonstrated little superoxide dismutase activity reduced little oxygen. The effects of medium composition and conditions of growth were examined for their influence on the level of the three enzymes. Bacteria grown on the surface of an enriched blood agar medium generally had more enzyme activity than bacteria grown in a liquid medium. The data indicate that superoxide dismutase activity and oxygen reduction rates are important determinants related to the tolerance of anaerobic bacteria to oxygen.  相似文献   

9.
Atmospheric ozone causes formation of various highly reactive intermediates (e.g. peroxyl and superoxide radicals, H2O2, etc.) in plant tissues. A plant's productivity in environments with ozone may be related to its ability to scavenge the free radicals formed. The effects of ozone on photosynthesis and some free radical scavengers were measured in the fifth emergent leaf of poplars. Clonal poplars (Populus deltoides × Populus cv caudina) were fumigated with 180 parts per billion ozone for 3 hours. Photosynthesis was measured before, during, and after fumigation. During the first 90 minutes of ozone exposure, photosynthetic rates were unaffected but glutathione levels and superoxide dismutase activity increased. After 90 minutes of ozone exposure, photosynthetic rates began to decline while glutathione and superoxide dismutase continued to increase. Total glutathione (reduced plus oxidized) increased in fumigated leaves throughout the exposure period. The ratio of GSH/GSSG also decreased from 12.8 to 1.2 in ozone exposed trees. Superoxide dismutase levels increased twofold in fumigated plants. After 4 hours of ozone exposure, the photosynthetic rate was approximately half that of controls while glutathione levels and superoxide dismutase activity remained above that of the controls. The elevated antioxidant levels were maintained 21 hours after ozone exposure while photosynthetic rates recovered to about 75% of that of controls. Electron transport and NADPH levels remained unaffected by the treatment. Hence, elevated antioxidant metabolism may protect the photosynthetic apparatus during exposure to ozone.  相似文献   

10.
Response of Plant-Colonizing Pseudomonads to Hydrogen Peroxide   总被引:5,自引:2,他引:5       下载免费PDF全文
Colonization of plant root surfaces by Pseudomonas putida may require mechanisms that protect this bacterium against superoxide anion and hydrogen peroxide produced by the root. Catalase and superoxide dismutase may be important in this bacterial defense system. Stationary-phase cells of P. putida were not killed by hydrogen peroxide (H2O2) at concentrations up to 10 mM, and extracts from these cells possessed three isozymic bands (A, B, and C) of catalase activity in native polyacrylamide gel electrophoresis. Logarithmic-phase cells exposed directly to hydrogen peroxide concentrations above 1 mM were killed. Extracts of logarithmic-phase cells displayed only band A catalase activity. Protection against 5 mM H2O2 was apparent after previous exposure of the logarithmic-phase cells to nonlethal concentrations (30 to 300 μM) of H2O2. Extracts of these protected cells possessed enhanced catalase activity of band A and small amounts of bands B and C. A single form of superoxide dismutase and isoforms of catalase were apparent in extracts from a foliar intercellular pathogen, Pseudomonas syringae pv. phaseolicola. The mobilities of these P. syringae enzymes were distinct from those of enzymes in P. putida extracts.  相似文献   

11.
In Escherichia coli, the coordinate action of two antioxidant enzymes, superoxide dismutase and hydroperoxidase (catalase), protect the cell from the deleterious effects of oxyradicals generated during normal aerobic respiration. To evaluate the relative importance of these two classes of enzymes, strains of E. coli deficient in superoxide dismutase and (or) hydroperoxidase were constructed by generalized transduction and their physiological responses to oxygen and oxidant stress examined. Superoxide dismutase was found to be more important than hydroperoxidase in preventing oxygen-dependent growth inhibition and mutagenesis, and in reducing sensitivity to redox-active compounds known to generate the superoxide anion. However, both types of enzymes were required for an effective defense against chemical oxidants that generate superoxide radicals and hydrogen peroxide.  相似文献   

12.
Cold shock at 0 to 15°C for 1 to 3 h increased the thermal sensitivity of Listeria monocytogenes. In a model broth system, thermal death time at 60°C was reduced by up to 45% after L. monocytogenes Scott A was cold shocked for 3 h. The duration of the cold shock affected thermal tolerance more than did the magnitude of the temperature downshift. The Z values were 8.8°C for controls and 7.7°C for cold-shocked cells. The D values of cold-shocked cells did not return to control levels after incubation for 3 h at 28°C followed by heating at 60°C. Nine L. monocytogenes strains that were cold shocked for 3 h exhibited D60 values that were reduced by 13 to 37%. The D-value reduction was greatest in cold-shocked stationary-phase cells compared to cells from cultures in either the lag or exponential phases of growth. In addition, cold-shocked cells were more likely to be inactivated by a given heat treatment than nonshocked cells, which were more likely to experience sublethal injury. The D values of chloramphenicol-treated control cells and chloramphenicol-treated cold-shocked cells were no different from those of untreated cold-shocked cells, suggesting that cold shock suppresses synthesis of proteins responsible for heat protection. In related experiments, the D values of L. monocytogenes Scott A were decreased 25% on frankfurter skins and 15% in ultra-high temperature milk if the inoculated products were first cold shocked. Induction of increased thermal sensitivity in L. monocytogenes by thermal flux shows potential to become a practical and efficacious preventative control method.  相似文献   

13.
目的:探索不同浓度臭氧(O3)急性暴露对雄性Wistar大鼠血管的损伤效应和可能的机制。方法:120只雄性Wistar大鼠随机分为6组,每组20只;实验动物置于气体染毒柜中,对照组暴露于过滤后空气,处理组分别暴露于浓度为0.12ppm,0.5ppm,1.0ppm,2.0ppm和4.0ppm的臭氧,持续暴露4h。利用PC-lab医学生理信号采集系统获得动脉血压数据;血流变指标和血生化指标由天津迪安诊断实验室检测;血清中内皮素(ET-1)、同型半胱氨酸(HCY)、血管性血友病因子(vWF)、8-羟基脱氧鸟苷(8-OhdG)、白介素(IL-6)和肿瘤坏死因子α(TNF-α)采用酶联免疫(ELISA)微孔板法检测;氧化应激指标超氧化物歧化酶(SOD)活力和丙二醛(MDA)分别采用黄嘌呤氧化酶法、硫代巴比妥酸(TBA)法测定,还原型谷胱甘肽(GSH)和一氧化氮(NO)采用微孔板比色法;取胸主动脉组织制备石蜡切片,经HE染色后观察血管结构改变。结果:0.12ppm臭氧急性暴露可导致动脉收缩血压(SBP)显著升高;不同浓度臭氧暴露均可导致血浆粘度显著升高,1.0ppm臭氧暴露组血沉(ESR)方程K值显著升高,全血高切相对指数和还原粘度均在臭氧浓度为0.5ppm和4.0ppm时显著降低,而红细胞变形指数在臭氧浓度为0.12ppm、0.5ppm、1.0ppm和2.0ppm时显著升高;急性臭氧暴露可导致总胆固醇含量降低,高密度脂蛋白胆固醇(HDL-C)在0.12ppm臭氧暴露组显著降低;当臭氧浓度高于1.0ppm时还可导致机体出现炎症反应(TNF-α升高)和氧化应激反应(MDA升高、GSH降低);臭氧急性暴露可导致血液中ET-1含量升高,在4.0ppm浓度组具有显著性差异,而HCY水平呈现先降低后升高的趋势,在1.0ppm浓度组达到最高值,胸主动脉未见明显的病理改变。结论:臭氧急性暴露可影响大鼠的动脉血压、血流变及胆固醇代谢,可能的机制是臭氧暴露导致炎症反应和氧化应激反应,引起血管内皮功能损伤,并且随着臭氧暴露浓度升高血管内皮细胞功能损伤越显著。  相似文献   

14.
Superoxide Dismutase in Bacillus popilliae   总被引:3,自引:2,他引:1       下载免费PDF全文
Vegetative cells of Bacillus popilliae were devoid of catalase but had high levels of superoxide dismutase. This provides further support of a theory that oxygen tolerance by an organism is more dependent on superoxide dismutase than on catalase.  相似文献   

15.
Superoxide dismutase and catalase activity has been studied in isogenous strains of various radioresistance bacteria. In mutants Micrococcus radiodurans having defects in the systems of DNA repair the superoxide dismutase activity is lower than in cells of wild type. The changes of catalase and superoxide dismutase activity have not been revealed in investigated strains Escherichia coli differing in radioresistance. It has been concluded that the survival of bacteria exposed to ionizing radiation is determined by the effectiveness of DNA repair systems realiability of which depends on the catalase and superoxide dismutase activity.  相似文献   

16.
The adaptive response of the yeast Yarrowia lipolytica to the oxidative stress induced by the oxidants hydrogen peroxide, menadione, and juglone has been studied. H2O2, menadione, and juglone completely inhibited yeast growth at concentrations higher than 120, 0.5, and 0.03 mM, respectively. The stationary-phase yeast cells were found to be more resistant to the oxidants than the exponential-phase cells. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.3 mM), menadione (0.05 mM), and juglone (0.005 mM) made the cells more resistant to high concentrations of these oxidants. The adaptation of yeast cells to H2O2, menadione, and juglone was associated with an increase in the activity of cellular catalase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase, the main enzymes involved in cell defense against oxidative stress.  相似文献   

17.
The microaerophilic nature of Campylobacter species implies an inherent sensitivity towards oxygen and its reduction products, particularly the superoxide anion. The deleterious effects of exposure to superoxide radicals are counteracted by the activity of superoxide dismutase (SOD). We have shown previously that Campylobacter coli possesses an iron cofactored SOD. The sodB gene of C. coli UA585 was insertionally inactivated by the site-specific insertion of a tetO cassette. Organisms harboring the inactivated gene failed to produce a biologically functional form of the enzyme. While the ability of this mutant to grow in aerobic conditions was unchanged relative to the parental strain, its survival was severely compromised when nongrowing cells were exposed to air. Accordingly, the SOD-deficient mutant was unable to survive for prolonged periods in model foods. Furthermore, inactivation of the sodB gene decreased the colonization potential in an experimental infection of 1-day-old chicks. In contrast, strain CK100, which is deficient in catalase activity, showed the same survival and colonization characteristics as the parental strain. These results indicate that SOD, but not catalase, is an important determinant in the ability of C. coli to survive aerobically and for optimal colonization within the chicken gut.  相似文献   

18.
The effect of ozone exposure on the activities of reactive oxygen scavenging enzymes (SOD†, catalase, GSH-Px) in RBC of Japanese charr (Salvelinus leucomaenis) was examined. Ozone (0, 0.4 and 0.7 ppm as initial concentrations) was exposed to Japanese charr for 30 min, which definitely caused serious membrane damage to RBC of fish. Ozone exposure at 0.4 and 0.7 ppm decreased activities of both catalase and GSH-Px by 80 to 57+ of the control. On the other hand, the activities of SOD remained unaffected even by 0.7 ppm ozone exposure. A hypothesis on the RBC membrane damage and participation of SOD and heme-iron was proposed.  相似文献   

19.
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster’s cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.  相似文献   

20.
Various deoxyribonucleic acid repair-deficient strains of Escherichia coli K-12 were exposed to hydrogen peroxide under anaerobic conling of the strains was determined. The level of catalase, peroxidase, and superoxide dismutase in cell-free extracts of the strains as well as the capacity of intact cells to decompose hydrogen peroxide were assayed, recA strains were more rapidly killed than other strains with deoxyribonucleic acid repair deficiencies. There was no correlation between the killing rate of the strains and the capacity of intact cells to decompose hydrogen peroxide or the level of catalase and superoxide dismutase in cell-free extracts. The level of peroxidase in cell-free extract was too low to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号