首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LPS preparations cause a variety of body temperature (T(b)) responses: monophasic fever, different phases of polyphasic fever, and hypothermia. Conventional (c) LPS preparations contain highly active lipoprotein contaminants (endotoxin proteins). Whereas LPS signals predominantly via the Toll-like receptor (TLR) 4, endotoxin proteins signal via TLR2. Several TLR2-dependent responses of immunocytes to cLPS in vitro are triggered by endotoxin proteins and not by LPS itself. We tested whether any T(b) response to cLPS from Escherichia coli 055:B5 is triggered by non-TLR4-signaling contaminants. A decontaminated (d) LPS preparation (free of endotoxin proteins) was produced by subjecting cLPS to phenol-water reextraction. The presence of non-TLR4-signaling contaminants in cLPS (and their absence in dLPS) was confirmed by showing that cLPS (but not dLPS) induced IL-1beta expression in the spleen and increased serum levels of TNF-alpha and IL-1beta of C3H/HeJ mice; these mice bear a nonfunctional TLR4. Yet, both cLPS and dLPS caused cytokine responses in C3H/HeOuJ mice; these mice bear a fully functional TLR4. We then studied the T(b) responses to cLPS and dLPS in Wistar rats preimplanted with jugular catheters. At a neutral ambient temperature (30 degrees C), a low (0.1 microg/kg iv) dose of cLPS caused a monophasic fever, whereas a moderate (10 microg/kg iv) dose produced a polyphasic fever. In the cold (20 degrees C), a high (500 microg/kg iv) dose of cLPS caused hypothermia. All T(b) responses to dLPS were identical to those of cLPS. We conclude that all known T(b) responses to LPS preparations are triggered by LPS per se and not by non-TLR4-signaling contaminants of such preparations.  相似文献   

2.
Toll-like receptor (TLR) 2 and TLR4 have been implicated in the responses of cells to LPS (endotoxin). CD14-transfected Chinese hamster ovary (CHO)-K1 fibroblasts (CHO/CD14) are exquisitely sensitive to endotoxin. Sequence analysis of CHO-TLR2, compared with human and mouse TLR2, revealed a single base pair deletion. This frameshift mutation resulted in an alternative stop codon, encoding a protein devoid of transmembrane and intracellular domains. CHO-TLR2 cDNA failed to enable LPS signaling upon transient transfection into human epithelial kidney 293 cells. Site-directed mutagenesis of CHO-TLR2 enabled expression of a presumed full-length hamster TLR2 that conferred LPS responsiveness in human epithelial kidney 293 cells. Genomic TLR2 DNA from primary hamster macrophages also contained the frameshift mutation found in CHO fibroblasts. Nevertheless, hamster peritoneal macrophages were found to respond normally to LPS, as evidenced by the induction of cytokines. These results imply that expression of TLR2 is sufficient but not essential for mammalian responses to endotoxin.  相似文献   

3.
4.
Leptospira interrogans is a spirochete that is responsible for leptospirosis, a zoonotic disease. This bacterium possesses an unusual LPS that has been shown to use TLR2 instead of TLR4 for signaling in human cells. The structure of its lipid A was recently deciphered. Although its overall hexa-acylated disaccharide backbone is a classical feature of all lipid A forms, the lipid A of L. interrogans is peculiar. In this article, the functional characterization of this lipid A was studied in comparison to whole parental leptospiral LPS in terms of cell activation and use of TLR in murine and human cells. Lipid A from L. interrogans did not coagulate the Limulus hemolymph. Although leptospiral lipid A activated strongly murine RAW cells, it did not activate human monocytic cells. Results obtained from stimulation of peritoneal-elicited macrophages from genetically deficient mice for TLR2 or TLR4 clearly showed that lipid A stimulated the cells through TLR4 recognition, whereas highly purified leptospiral LPS utilized TLR2 as well as TLR4. In vitro experiments with transfected human HEK293 cells confirmed that activation by lipid A occurred only through murine TLR4-MD2 but not through human TLR4-MD2, nor murine or human TLR2. Similar studies with parental leptospiral LPS showed that TLR2/TLR1 were the predominant receptors in human cells, whereas TLR2 but also TLR4 contributed to activation in murine cells. Altogether these results highlight important differences between human and mouse specificity in terms of TLR4-MD2 recognition that may have important consequences for leptospiral LPS sensing and subsequent susceptibility to leptospirosis.  相似文献   

5.
Heat shock proteins (Hsp) 60 and 70 have been intensively studied for their ability to activate innate immunity. Heat shock proteins had been shown to induce the activation of dendritic cells, T cells, and B cells. However, the possible contamination of endotoxin in heat shock protein preparations makes their function as an activator of immune system ambiguous. Here, we examined the ability of bacterial Hsp60 and Hsp70 to activate Jurkat T cells and primary T cells. We found that Burkholderia pseudomallei Hsp70 and Mycobacterium tuberculosis Hsp70 could costimulate Jurkat T cells to make IL-2 and signal through TLR5. This costimulatory activity is not due to endotoxin or contaminants signaling via TLR2 nor TLR4. However, recombinant Hsp70 expressed in Escherichia coli DeltafliC strain completely lost its ability to costimulate T cells. Thus, the activation of T cells by recombinant Hsp70 is ascribed to flagellin contamination.  相似文献   

6.
The reversible airway hyper-reactivity (AHR) of asthma is modeled by sensitizing and challenging mice with aerosolized ovalbumin. However, the C57BL/6 murine strain does not display the large increase in circulating IgG and IgE antibodies found in human atopy and asthma. We found that commercial ovalbumin was contaminated with lipopolysaccharide (LPS) in amounts sufficient to fully activate endothelial cells in an in vitro assay of the first step of inflammation. Desensitization of TLR4 by LPS pretreatment suppressed the inflammatory effect of ovalbumin. The presence of LPS was occult, because it does not require serum presentation and, like the LPS of Salmonella minnesota, was not suppressed by polymyxin B. Purified ovalbumin did not activate endothelial cells in vitro; however, endotoxin-free ovalbumin was far more effective than commercial material in stimulating IgE production and respiratory dysfunction in a C57BL/6 murine model of AHR. Moreover, endotoxin-free ovalbumin induced lung inflammation with alveolar enlargement and destruction in a histologic pattern that differed from the changes caused by commercial, endotoxin-contaminated ovalbumin. Reconstitution of purified ovalbumin with S. minnesota LPS decreased lung inflammation, decreased changes in lung function, and suppressed anti-ovalbumin antibody production. We conclude endotoxin contaminates ovalbumin preparations and that endotoxin co-administration with the ovalbumin antigen creates a state of tolerance in a murine model of AHR. Co-exposure to endotoxin and antigen occurs in humans through organic dusts, so murine models of AHR may reflect the clinical situation, but models based on commercial ovalbumin do not accurately reflect the effect of protein antigen alone on animal physiology.  相似文献   

7.
MD-2 associates with the extracellular domain of Toll-like receptor 4 (TLR4) and greatly enhances LPS signaling via TLR4. Taxol, which mimics the action of LPS on murine macrophages, induces signals via mouse TLR4-MD-2, but not via human TLR4-MD-2. Here we investigated the molecular basis for this species-specific action of Taxol. Expression of mouse MD-2 conferred both LPS and Taxol responsiveness on human embryonic kidney 293 cells expressing mouse TLR4, whereas expression of human MD-2 conferred LPS responsiveness alone, suggesting that MD-2 is responsible for the species-specificity as to Taxol responsiveness. Furthermore, mouse MD-2 mutants, in which Gln(22) was changed to other amino acids, showed dramatically reduced ability to confer Taxol responsiveness, although their ability to confer LPS responsiveness was not affected. These results indicated that Gln(22) of mouse MD-2 is essential for Taxol signaling but not for LPS signaling.  相似文献   

8.
TLR signal via Toll-IL-1R (TIR) homology domain-containing adaptor proteins. One of these adaptors, Toll-IL-1R domain-containing adaptor inducing IFN-beta-related adaptor molecule (TRAM), has been shown to be essential for TLR4 signaling in TRAM(-/-) mice and cell lines. Previously, we showed that MyD88 or Mal dominant-negative constructs did not inhibit LPS induction of cytokines in primary human M-CSF-derived macrophages. A possible explanation was redundancy of the adaptors during LPS signaling. TRAM is a suitable candidate to compensate for these adaptors. To investigate a potential role for TRAM in LPS signaling in human M-CSF-derived macrophages, we engineered an adenoviral construct expressing dominant-negative TRAM-C117H (AdTRAMdn). Synovial fibroblasts (SF) and human umbilical endothelial cells (HUVECs) were used as a nonmyeloid comparison. AdTRAMdn inhibited LPS-induced signaling in SFs and HUVECs, reducing NF-kappaB activation and cytokine production, but did not inhibit LPS signaling in M-CSF-derived human macrophages. Further investigation of other TLR ligands showed that AdTRAMdn was also able to inhibit signaling initiated by lipoteichoic acid, a TLR2 ligand, in SFs and HUVECs and lipoteichoic acid and macrophage-activating lipopeptide 2 signaling was also inhibited in TRAM(-/-) murine embryonic fibroblasts. We conclude that TRAM is an adaptor protein for both TLR4 and TLR2/6 signaling in SFs, HUVECs, and murine embryonic fibroblasts, but cannot demonstrate a role in human macrophages.  相似文献   

9.
Down-regulation of cell surface expression of Toll-like receptor (TLR) 4 following LPS stimulation has been suggested to underlie endotoxin tolerance. In this study, we examined whether overexpression of TLR2 or TLR4 would affect the ability of cells to become tolerant to LPS or the mycobacterial components, arabinose-capped lipoarabinomannan (LAM) and soluble tuberculosis factor (STF). To this end, Chinese hamster ovary/CD14 cells stably transfected with a NF-kappaB-dependent reporter construct, endothelial leukocyte adhesion molecule CD25 (the 3E10 clone), were engineered to overexpress either human TLR2 or TLR4. Transfected TLRs exhibited proper signaling functions, as evidenced by increased LPS responsiveness of 3E10/TLR4 cells and acquisition of sensitivity to TLR2-specific ligands upon transfection of TLR2 into TLR2-negative 3E10 cells. Pretreatment of cells with LPS, LAM, or STF did not modulate TLR2 or TLR4 cell surface expression. Following LPS exposure, 3E10, 3E10/TLR2, and 3E10/TLR4 cells exhibited comparable decreases in LPS-mediated NF-kappaB activation and mitogen-activated protein (MAP) kinase phosphorylation. Likewise, LPS pretreatment profoundly inhibited LPS-induced NF-kappaB translocation in Chinese hamster ovary cells that concomitantly overexpressed human TLR4 and myeloid differentiation protein-2 (MD-2), but failed to modulate TLR4 or MD-2 cell surface expression. Pretreatment of 3E10/TLR2 cells with LAM or STF decreased their NF-kappaB responses induced by subsequent stimulation with these substances or LPS. Conversely, prior exposure of 3E10/TLR2 cells to LPS led to hyporesponsiveness to LPS, LAM, and STF, indicating that LPS and mycobacterial products induce cross-tolerance. Thus, tolerance to LPS and mycobacterial components cannot be attributed solely to a decrease in TLR/MD-2 expression levels, suggesting inhibition of expression or function of other signaling intermediates.  相似文献   

10.
11.
LPS, a molecule produced by Gram-negative bacteria, is known to activate both innate immune cells such as macrophages and adaptive immune B cells via TLR4 signaling. Although TLR4 is also expressed on T cells, LPS was observed not to affect T cell proliferation or cytokine secretion. We now report, however, that LPS can induce human T cells to adhere to fibronectin via TLR4 signaling. This response to LPS was confirmed in mouse T cells; functional TLR4 and MyD88 were required, but T cells from TLR2 knockout mice could respond to LPS. The human T cell response to LPS depended on protein kinase C signaling and involved the phosphorylation of the proline-rich tyrosine kinase (Pyk-2) and p38. LPS also up-regulated the T cell expression of suppressor of cytokine signaling 3, which led to inhibition of T cell chemotaxis toward the chemokine stromal cell-derived factor 1alpha (CXCL12). Thus, LPS, through TLR4 signaling, can affect T cell behavior in inflammation.  相似文献   

12.
In this study, we examined whether tyrosine phosphorylation of the Toll-IL-1 resistance (TIR) domain of Toll-like receptor (TLR) 4 is required for signaling and blocked in endotoxin tolerance. Introduction of the P712H mutation, responsible for lipopolysaccharide (LPS) unresponsiveness of C3H/HeJ mice, into the TIR domain of constitutively active mouse DeltaTLR4 and mutation of the homologous P714 in human CD4-TLR4 rendered them signaling-incompetent and blocked TLR4 tyrosine phosphorylation. Mutations of tyrosine residues Y674A and Y680A within the TIR domains of CD4-TLR4 impaired its ability to elicit phosphorylation of p38 and JNK mitogen-activated protein kinases, IkappaB-alpha degradation, and activation of NF-kappaB and RANTES reporters. Likewise, full-length human TLR4 expressing Y674A or Y680A mutations showed suppressed capacities to mediate LPS-inducible cell activation. Signaling deficiencies of the Y674A and Y680A TLR4s correlated with altered MyD88-TLR4 interactions, increased associations with a short IRAK-1 isoform, and decreased amounts of activated IRAK-1 in complex with TLR4. Pretreatment of human embryonic kidney (HEK) 293/TLR4/MD-2 cells with protein tyrosine kinase or Src kinase inhibitors suppressed LPS-driven TLR4 tyrosine phosphorylation, p38 and NF-kappaB activation. TLR2 and TLR4 agonists induced TLR tyrosine phosphorylation in HEK293 cells overexpressing CD14, MD-2, and TLR4 or TLR2. Induction of endotoxin tolerance in HEK293/TLR4/MD-2 transfectants and in human monocytes markedly suppressed LPS-mediated TLR4 tyrosine phosphorylation and recruitment of Lyn kinase to TLR4, but did not affect TLR4-MD-2 interactions. Thus, our data demonstrate that TLR4 tyrosine phosphorylation is important for signaling and is impaired in endotoxin-tolerant cells, and suggest involvement of Lyn kinase in these processes.  相似文献   

13.
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.  相似文献   

14.
Prior exposure to LPS induces a transient state of cell refractoriness to subsequent LPS restimulation, known as endotoxin tolerance. Induction of LPS tolerance has been reported to correlate with decreased cell surface expression of the LPS receptor complex, Toll-like receptor 4 (TLR4)/MD-2. However, other results have underscored the existence of mechanisms of LPS tolerance that operate downstream of TLR4/MD-2. In the present study we sought to delineate further the molecular basis of LPS tolerance by examining the TLR4 signaling pathway in endotoxin-tolerant cells. Pretreatment of human monocytes with LPS decreased LPS-mediated NF-kappaB activation, p38 mitogen-activated protein kinase phosphorylation, and TNF-alpha gene expression, documenting the induction of endotoxin tolerance. FACS and Western blot analyses of LPS-tolerant monocytes showed increased TLR2 expression, whereas TLR4 expression levels were not affected. Comparable levels of mRNA and protein for myeloid differentiation factor 88 (MyD88), IL-1R-associated kinase 1 (IRAK-1), and TNFR-associated factor-6 were found in normal and LPS-tolerant monocytes, while MD-2 mRNA expression was slightly increased in LPS-tolerant cells. LPS induced the association of MyD88 with TLR4 and increased IRAK-1 activity in medium-pretreated cells. In LPS-tolerant monocytes, however, MyD88 failed to be recruited to TLR4, and IRAK-1 was not activated in response to LPS stimulation. Moreover, endotoxin-tolerant CHO cells that overexpress human TLR4 and MD-2 also showed decreased IRAK-1 kinase activity in response to LPS despite the failure of LPS to inhibit cell surface expression of transfected TLR4 and MD-2 proteins. Thus, decreased TLR4-MyD88 complex formation with subsequent impairment of IRAK-1 activity may underlie the LPS-tolerant phenotype.  相似文献   

15.
How infection precipitates depressed contractility is incompletely understood but may involve the immune, nervous, and endocrine systems as well as the heart itself. In this study, we examined the role of Toll-like receptor 4 (TLR4) in LPS-induced myocardial contractile depression. Eighteen hours following endotoxin challenge, we compared contractile responses in hearts from wild-type (WT) and TLR4-deficient mice using modified Langendorff preparations. Unlike hearts from WT mice, TLR4-deficient hearts did not reveal significant contractile dysfunction following LPS administration, as measured by decreased responses in maximal left ventricular pressure, +dP/dtmax, and -dP/dtmax in ex vivo Langendorff preparations. These findings indicate a requirement for TLR4 in LPS-induced contractile depression. To determine the contribution of bone marrow-derived TLR4 function to LPS-induced myocardial dysfunction, we generated TLR4 chimeras using adoptive transfer between histocompatible mouse strains: either TLR4-deficient mice with TLR4+/+ bone marrow-derived cells or TLR4+/+ animals lacking TLR4 in their hematopoietic cells. We then compared the contractile responses of engrafted animals after LPS challenges. Engraftment of TLR4-deficient mice with WT marrow restored sensitivity to the myocardial depressant effects of LPS in TLR4-deficient hearts (P < 0.05). Inactivation of bone marrow-derived TLR4 function, via transplantation of WT mice with TLR4-/- marrow, however, did not protect against the depressant effect of endotoxin. These findings indicate that bone marrow-derived TLR4 activity is sufficient to confer sensitivity to mice lacking TLR4 in all other tissues. However, because inactivation of marrow-derived TLR4 function alone does not protect against endotoxin-triggered contractile dysfunction, TLR4 function in other tissues may also contribute to this response.  相似文献   

16.
Previous studies have implicated a role for heterotrimeric G protein-coupled signaling in B cells, monocytes, and macrophages stimulated with LPS and have shown that G proteins coimmunoprecipitate with membrane-bound CD14. In this study, we have extended these observations in human dermal microvessel endothelial cells (HMEC) that lack membrane-bound CD14 and in murine macrophages to define further the role of heterotrimeric G proteins in TLR signaling. Using the wasp venom-derived peptide, mastoparan, to disrupt G protein-coupled signaling, we identified a G protein-dependent signaling pathway in HMEC stimulated with TLR4 agonists that is necessary for the activation of p38 phosphorylation and kinase activity, NF-kappaB and IL-6 transactivation, and IL-6 secretion. In contrast, HMEC activation by TLR2 agonists, TNF-alpha, or IL-1beta was insensitive to mastoparan. In the murine macrophage cell line, RAW 264.7, and in primary murine macrophages, G protein dysregulation by mastoparan resulted in significant inhibition of LPS-induced signaling leading to both MyD88-dependent and MyD88-independent gene expression, while TLR2-mediated gene expression was not significantly inhibited. In addition to inhibition of TLR4-mediated MAPK phosphorylation in macrophages, mastoparan blunted IL-1R-associated kinase-1 kinase activity induced by LPS, but not by TLR2 agonists, yet failed to affect phosphorylation of Akt by phosphoinositol-3-kinase induced by either TLR2- or TLR4-mediated signaling. These data confirm the importance of heterotrimeric G proteins in TLR4-mediated responses in cells that use either soluble or membrane-associated CD14 and reveal a level of TLR and signaling pathway specificity not previously appreciated.  相似文献   

17.
Pectin, a water-soluble dietary fiber, has been found to improve survival in endotoxin shock. However, the underlying mechanism by which pectin exerts its protective effect against endotoxin shock remains unknown. Apart from its prebiotic effects, it has been suggested that pectin directly affects immune cells to regulate inflammatory responses. In this study, we investigated the direct effect of pectin in murine model of endotoxin shock. Citrus pectin solution was administered to male C57BL/6 mice for 10 days. Thereafter, hypothermia was induced in the mice with intraperitoneal injection of lipopolysaccharide (LPS). The pectin-treated mice showed attenuation of both the decrease in rectal temperature and increase in serum IL-6 level as compared to vehicle control mice. Simultaneously, the pectin-treated mice showed reduced levels of inflammatory cytokine mRNA in Peyer's patches and mesenteric lymph nodes, but not in the spleen. Peyer's patch cells from the pectin-treated mice were sorted and their levels of IL-6 production on LPS stimulation were measured. The results of ex vivo analysis indicated that IL-6 secretion from CD11c+ cells was suppressed by oral administration of pectin. Furthermore, IL-6 secretion from Toll-like receptor (TLR)-activated RAW264.7 cells was suppressed by pretreatment with pectin in vitro. This suppression was observed even with degraded pectin pretreatment but not with polygalacturonic acid, as the principal constituent of the pectin backbone. Taken together, these results suggest that pectin intake suppresses TLR-induced inflammatory cytokine expression in Peyer's patch myeloid cells, presumably through inhibition of TLR signaling by the pectin side chains.  相似文献   

18.
Mammalian Toll-like receptor (TLR) proteins are new members of the IL-1 receptor family that participate in activation of cells by bacteria and bacterial products. Several recent reports indicate that TLR proteins mediate cellular activation by bacterial LPS via a signaling pathway that is largely shared by the type I IL-1 receptor. We previously showed that Chinese hamster ovary (CHO) fibroblasts engineered to express CD14 (CHO/CD14) were responsive to LPS, but not to a distinct CD14 ligand, mycobacterial lipoarabinomannan (LAM). These CHO/CD14 cells were subsequently found to possess a frame-shift mutation within the TLR2 gene which resulted in their inability to express functional TLR2 protein. Thus, we hypothesized that TLR2, but not TLR4, was necessary for LAM signaling. In this paper we show that CHO/CD14 cells engineered to express functional TLR2 protein acquired the ability to be activated by LAM. Similarly, overexpression of TLR2 in murine macrophages conferred enhanced LAM responsiveness. Together, our data demonstrate that the distinct CD14 ligands LAM and LPS utilize different TLR proteins to initiate intracellular signals. These findings suggest a novel receptor signaling paradigm in which the binding of distinct ligands is mediated by a common receptor chain, but cellular activation is initiated via distinct signal-transducing chains that confer ligand specificity. This paradigm contrasts with many cytokine receptor complexes in which receptor specificity is conferred by a unique ligand-binding chain but cellular activation is initiated via shared signal-transducing chains.  相似文献   

19.
We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4. To elucidate the specific molecular components that mediate antagonism, we developed a recombinant human TLR4 signaling complex that displayed efficient LPS-dependent antagonism of E. coli LPS in HEK293 cells. Notably, changes in the expression levels of TLR4 in HEK293 cells modulated the efficiency of antagonism by P. gingivalis LPS. Both soluble (s) CD14 and membrane (m) CD14 supported efficient P. gingivalis LPS-dependent and msbB LPS-dependent antagonism of E. coli LPS in the recombinant TLR4 system. When cells expressing TLR4, MD-2, and mCD14 were exposed to LPS in the absence of serum-derived LBP, efficient LPS-dependent antagonism of E. coli LPS was still observed indicating that LPS-dependent antagonism occurs downstream of LBP. Experiments using immunoprecipitates of sCD14 or sMD-2 that had been pre-exposed to agonist and antagonist indicated that LPS-dependent antagonism occurs partially at sCD14 and potently at sMD-2. This study provides novel evidence that expression levels of TLR4 can modulate the efficiency of LPS-dependent antagonism. However, MD-2 represents the principal molecular component that tetra-acylated P. gingivalis LPS and penta-acylated msbB LPS use to antagonize hexa-acylated E. coli LPS at the TLR4 signaling complex.  相似文献   

20.
During evolution, mammals have evolved a powerful innate immune response to LPS. Chickens are much more resistant to LPS-induced septic shock. Herein we report that chickens sense LPS via orthologs of mammalian TLR4 and myeloid differentiation protein-2 (MD-2) rather than the previously implicated chicken TLR2 isoform type 2 (chTLR2t2) receptor. Cloning and expression of recombinant chTLR4 and chMD-2 in HeLa 57A cells activated NF-kappaB at concentrations of LPS as low as 100 pg/ml. Differential pairing of chicken and mammalian TLR4 and MD-2 indicated that the protein interaction was species-specific in contrast to the formation of functional human and murine chimeric complexes. The chicken LPS receptor responded to a wide variety of LPS derivatives and to the synthetic lipid A compounds 406 and 506. The LPS specificity resembled the functionality of the murine rather than the human TLR4/MD-2 complex. Polymorphism in chTLR4 (Tyr(383)His and Gln(611)Arg) did not influence the LPS response. Interestingly, LPS consistently failed to activate the MyD88-independent induction of IFN-beta in chicken cells, in contrast to the TLR3 agonist poly(I:C) that yielded a potent IFN-beta response. These results suggest that chicken lack a functional LPS-specific TRAM-TRIF (TRIF-related adapter molecule/TIR-domain-containing adapter-inducing IFN-beta) signaling pathway, which may explain their aberrant response to LPS compared with the mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号