首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
K Saeki  S Ikeda  M Nishibori 《Life sciences》1983,32(26):2973-2980
When added to Ca2+-free Hanks' solution, Ca2+ (0.1-2.5 mM) had no significant effect on antigen-induced histamine release from rat mast cells, but Sr2+ (1.0-3.0 mM) dose-dependently increased the release. Ba2+ (1.0 and 2.0 mM) also enhanced the release. Ca2+ and Ba2+ inhibited compound 40/80-induced histamine release, in a dose-dependent manner. In ordinary Hanks' medium, theophylline and 3-isobutyl-1-methylxanthine (IBMX) dose-dependently inhibited the antigen-induced histamine release but these drugs were ineffective in Ca2+-free medium. Theophylline (1.0 mM) also inhibited compound 48/80-induced histamine release in the presence but not absence of Ca2+. There was an optimal Ca2+ concentration for the theophylline effect. Sr2+ but not Ba2+ could substitute for Ca2+ in supporting the theophylline effect. Theophylline (1.0 mM) and IBMX (1.0 mM) increased mast cell cyclic AMP levels both in the presence and absence of Ca2+. These results suggest that Ca2+ is required in the interaction of theophylline and specific sites on mast cells or in the mast cell response to theophylline which probably does not involve the cyclic AMP increase and is linked to the inhibition of histamine release.  相似文献   

2.
Intracellular uptake of A23187 and the increased release of amylase and lactate dehydrogenase (LDH) accompanying ionophore uptake was studied using dissociated acinar cells prepared from mouse pancreas. Easily detected changes in the fluorescence excitation spectrum of A23187 upon transfer of the ionophore from a Tris-buffered Ringer's to cell membranes were used to monitor A23187 uptake. Uptake was rapid in the absence of extracellular Ca2+ and Mg2+ (t1/2=1 min) and much slower in the presence of Ca2+ or Mg2+ (t1/2=20 min). Cell-associated ionophore was largely intracellular as indicated by fluorescence microscopy, lack of spectral sensitivity to changes in extracellular Ca2+ and Mg2+, and by equivalent interaction of ionophore with membranes of whole and sonicated cells. A23187 (10 micronm) increased amylase release 200% in the presence of extracellular Ca2+ and Mg2+. In the absence of Ca2+ (but in the presence of Mg2+) A23187 did not increase amylase release. A23187 (10 micronm) also produced Ca2+ -dependent cell damage, as judged by increased LDH release, increased permeability to trypan blue, and by disruption of cell morphology. The cell damaging and amylase releasing properties of A23187 were distinguished by their time course and dose-response relationship. A23187 (1 micronm) increased amylase release 140% without increasing LDH release or permeability to trypan blue.  相似文献   

3.
Gonadotropin-releasing hormone (GnRH) stimulates pituitary gonadotrope cells to release luteinizing hormone (LH). Previous studies have indicated a role for Ca+2 in this process; however, the present study provides the first measurements of an increased intracellular Ca+2 concentration. Pituitary cell cultures enriched for gonadotropes were loaded with quin 2, a fluorescent Ca+2-sensitive molecule. Subsequent addition of GnRH to these cells produced a rapid (within 10 sec) increase in fluorescence (indicating an increase in intracellular free Ca+2). In contrast, two GnRH analogs, des1 GnRH (a very low-affinity binder to the GnRH receptor) and Ac[D-pCl-Phe1,2] DTrp3 DLys6 DAla10-GnRH (a pure GnRH antagonist) produced no such Ca+2 change, thus showing a correlation between increased intracellular Ca+2 and LH release. A functional relationship between increased Ca+2 and LH release was suggested by experiments in which LH release was inhibited from cells loaded with high levels of intracellular quin 2 (in order to chelate intracellular Ca+2). Since this inhibition was completely reversed by addition of the Ca+2 ionophore A23187, quin 2 was not toxic at the concentrations used and apparently inhibited LH release by buffering intracellular Ca+2. The results presented here are consistent with the hypothesis that GnRH-stimulated LH release is mediated by increased intracellular Ca+2 and support the notion that the rate-limiting step in GnRH-stimulated LH release is distal to Ca+2 mobilization.  相似文献   

4.
Permeabilized rat hepatocytes were used to study the effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP on Ca2+ uptake and release by ATP-dependent intracellular Ca2+ storage pools. Under conditions where these Ca2+ pools were completely filled, maximal doses of Ins(1,4,5)P3 released only 25-30% of the sequestered Ca2+. The residual Ca2+ was freely releasable with the Ca2+ ionophore ionomycin. Addition of GTP in the absence of Ins(1,4,5)P3 did not cause Ca2+ release and had no effect on the steady-state level of Ca2+ accumulation by intracellular storage pools. However, after a 3-4-min treatment with GTP the size of the Ins(1,4,5)P3-releasable Ca2+ pool was increased by about 2-fold, with a proportional decrease in the residual Ca2+ available for release by ionomycin. In contrast to the situation with freshly permeabilized cells, permeabilized hepatocytes from which cytosolic components had been washed out exhibited direct Ca2+ release in response to GTP addition. The potentiation of Ins(1,4,5)P3-induced Ca2+ release by GTP in permeabilized hepatocytes was concentration-dependent with half-maximal effects at about 5 microM GTP. The dose response to Ins(1,4,5)P3 was not shifted by GTP; instead GTP increased the amount of Ca2+ released at all Ins(1,4,5)P3 concentrations. The effects of GTP were not mimicked by other nucleotides or nonhydrolyzable GTP analogues. In fact, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) inhibited the actions of GTP. However, this inhibition only occurred when GTP gamma S was added prior to GTP, suggesting that the GTP effect is not readily reversible once the cells have been permeabilized. Experiments using vanadate to inhibit the ATP-dependent Ca2+ uptake pump showed that Ins(1,4,5)P3 releases all of the Ca2+ within the Ins(1,4,5)P3-sensitive Ca2+ pool even in the absence of GTP. The increase of Ins(1,4,5)P3-induced Ca2+ release brought about by GTP was also unaffected by vanadate. It is concluded that GTP increases the proportion of the sequestered Ca2+ which is available for release by Ins(1,4,5)P3, either by unmasking latent Ins(1,4,5)P3-sensitive Ca2+ release sites or by allowing direct Ca2+ movement between Ins(1,4,5)P3-sensitive and Ins(1,4,5)P3-insensitive Ca2+ storage pools.  相似文献   

5.
Phospholipid metabolism in rat mast cells activated by antigen was examined with reference to phosphatidylinositol (PI) turnover. Upon antigen stimulation, histamine release from passively sensitized mast cells with IgE was potentiated by adding phosphatidylserine (PS). The addition of antigen to [3H]glycerol-prelabeled and sensitized mast cells induced a marked loss of radioactivity of PI and a concurrent accumulation of 1,2-diacylglycerol (DG) and phosphatidic acid (PA) within 5 to 60 sec. Furthermore, this antigen-induced PI breakdown was enhanced in the presence of Mg2+. Histamine release occurred in parallel with PI breakdown. On the other hand, the transient Ca2+ influx into mast cells, as measured by uptake of 45Ca2+, was found to occur quickly after cells were activated by antigen, which was concerted with PI breakdown. These results suggest that enhanced PI turnover may be an important step in the biochemical sequence of events leading to release of histamine, and that not only Ca2+ but also Mg2+ appears to take a part in stimulus-response coupling in rat mast cells.  相似文献   

6.
Catecholamine (CA) release from adrenal medulla evoked by muscarinic receptor stimulation has been studied using isolated perfused adrenal gland and cultured chromaffin cells from dogs. Muscarine and oxotremorine (1-100 microM), and bethanechol (0.1-1 mM) dose-dependently stimulated CA release. Muscarine-evoked CA release was antagonized with M1-antagonist, pirenzepine and, to a lesser extent, with atropine; and was reduced either by removal of extracellular Ca2+ or treatment with Ca2+ channel blockers. Muscarine caused an increase of 45Ca uptake and 22Na uptake. Tetrodotoxin (TTX) did not affect muscarine-evoked increase of 22Na uptake and CA release. Under the absence of extracellular Ca2+, muscarine stimulated a 45Ca efflux. Muscarine-induced CA release was attenuated by treating the cells with 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate-HCl (TMB-8) which blocks Ca2+ release from the intracellular store. A phospholipase C inhibitor, neomycin, markedly reduced muscarine-induced CA release but not nicotine- and high K(+)-evoked release. Cinnarizine, a Ca2+ channel blocker, attenuated muscarine-evoked but not caffeine-induced CA release and 45Ca efflux in the absence of extracellular Ca2+. Muscarine caused an increase in intracellular free Ca2+ concentration ([Ca2+]i) in the presence of extracellular Ca2+. It caused a similar increase, but to a lesser extent, in the absence of extracellular Ca2+. The increase of [Ca2+]i induced by muscarine without extracellular Ca2+ was reduced by neomycin and cinnarizine. Polymixin B and retinal, which reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced CA release, had little effect on muscarine-induced CA release. Muscarine increased cellular Ins(1,4,5)P3 production, and atropine inhibited this increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Chemiluminescent detection was applied to measure the continuous spontaneous Ca2+-independent liberation of acetylcholine (ACh) from Torpedo electric organ synaptosomes. Differentiation between the release of ACh and choline was achieved by inhibiting cholinesterases with phospholine, and a way to quantify the continuous release was devised. The method permitted measurements during short time intervals from minute amounts of tissue and without an accumulation of ACh in the medium. Synaptosomes continuously liberated small amounts of ACh during incubations in the presence of 3 mM K+ and in the absence of Ca2+. The spontaneous liberation of ACh was similar both quantitatively and qualitatively at pH values of 8.6 and 7.8. It was unaltered by MgCl2 (10.4 mM), 2-(4-phenylpiperidino)cyclohexanol (10 microM), ouabain (104 microM), atropine (10 microM), and valinomycin (102 nM). Carbamoylcholine brought about a decrease, which could be partially reversed by atropine. The Ca2+-independent output of ACh was increased considerably when the concentration of K+ ions was raised (eightfold at 103 and 35-fold at 203 mM K+). Carbamoylcholine (104 microM) blocked the increase in ACh release produced by high K+; this effect of carbamoylcholine was not reversed by atropine (10 microM). When Ca2+ was added to synaptosomes depolarized by a high concentration of K+, the amount of ACh released during the first 1-3 min after the addition of Ca2+ was at least 20 times higher than in the absence of Ca2+, but the release returned rapidly to predepolarization values. Similarly high values of ACh release could be achieved by adding Ca2+ plus the ionophore A23187 and even higher values by adding Ca2+ plus gramicidin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The periodontal pathogen Porphyromonas gingivalis modulates epithelial cell signal transduction pathways including Ca2+ signaling, and internalizes within the host cell cytoplasm. Since nuclear and cytoplasmic [Ca2+] increases can induce different host cell responses, P. gingivalis-related [Ca2+] changes in these compartments were measured by digital fluorescent imaging microscopy. Non-deconvolved and deconvolved fura-2 images showed that P. gingivalis exposure caused human gingival epithelial cells cultured in physiologic [Ca2+] levels to undergo sustained oscillations of [Ca2+] in nuclear and cytoplasmic spaces. However, P. gingivalis invasion was not tightly correlated with intracellular [Ca2+] oscillations, since invasion could significantly precede, or even occur in the absence of, oscillations. [Ca2+] oscillations required a Ca2+ influx, which was completely inhibited by La3+ or 2-APB (2-aminoethoxydiphenyl borate), indicating Ca2+ entry was via a Ca(2+)-permeable channel. Ca2+ entry was likely not via a store-operated channel, since Ca2+ release from intracellular stores was not observed during cellular uptake of P. gingivalis. Hence, uptake of P. gingivalis in gingival epithelial cells induces oscillations in nuclear and cytoplasmic spaces by activating a Ca2+ influx through Ca2+ channels.  相似文献   

9.
The effects of nitrogen monoxide (NO)-related compounds on cytosolic free Ca2+ concentrations ([Ca2+]i) and noradrenaline (NA) release in neurosecretory PC12 cells were investigated. The addition of S-nitroso-cysteine (SNC) stimulated [Ca2+]i increases from an intracellular Ca2+ pool continuously in a concentration-dependent manner. Other NO donors, which stimulate cyclic GMP accumulation, did not cause [Ca2+]i increases. After treatment with 0.2 mM SNC, transient increases in [Ca2+]i from the Ca2+ pool induced by caffeine were completely abolished. The addition of N-ethylmaleimide (NEM) caused sustained [Ca2+]i increases from the intracellular Ca2+ pool. Furthermore, caffeine did not stimulate further [Ca2+]i increases in PC12 cells pretreated with NEM. These findings suggest that SNC and NEM predominantly interact with a caffeine-sensitive Ca2+ pool. The addition of dithiothreitol (DTT) to 0.4 mM SNC-stimulated cells reduced [Ca2+]i to basal levels, and the addition of DTT to NEM-stimulated cells locked [Ca2+]i at high levels. The stimulatory effects of SNC but not NEM were not abolished by pretreatment with DTT. These findings suggest that modification of the oxidation status of the sulfhydryl groups on the caffeine-sensitive receptors by SNC or NEM regulates Ca2+ channel activity in a reversible manner. SNC did not stimulate NA release by itself but did inhibit ionomycin-stimulated NA release. In contrast, NEM stimulated NA release in the absence of extracellular CaCl2 and further enhanced ionomycin-stimulated NA release. Ca2+ mobilization by SNC from the caffeine-sensitive pool was not a sufficient factor, and other factors stimulating NA release may be negatively regulated by SNC.  相似文献   

10.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

11.
Skinned cells of chicken gizzard were used to study the effect of a smooth muscle phosphatase (SMP-IV) on activation and relaxation of tension. SMP-IV has previously been shown to dephosphorylate light chains on myosin. When this phosphatase was added to submaximally Ca2+-activated skinned cells, tension increased while phosphorylation of myosin light chains decreased. In contrast, when the myosin phosphatase was added to cell bundles activated in the absence of Ca2+ by a Ca2+-insensitive myosin light chain kinase, tension and phosphorylation of the myosin light chains both decreased. These data suggest that Ca2+ inhibits the deactivation of tension even when myosin light chains are dephosphorylated to a low level. Furthermore, comparison of Ca2+-activated cells caused to relax in CTP, in the presence or absence of Ca2+, shows that cells in the presence of Ca2+ do not relax completely, whereas in the absence of Ca2+ cells completely relax. Solutions containing Ca2+ and CTP, however, are incapable of generating tension from the resting state. Endogenous myosin light chain kinase is not active in solutions containing CTP and dephosphorylation of myosin light chains occurs in CTP solutions both in the presence and absence of Ca2+. These data imply that Ca2+ inhibits relaxation even though myosin light chains are dephosphorylated. These data are consistent with a model wherein an obligatory Ca2+-activated myosin light chain phosphorylation is followed by a second Ca2+ activation process for further tension development or maintenance.  相似文献   

12.
Phosphatidylserine (PS) was exposed at the surface of human umbilical vein endothelial cells (HUVECs) and cultured cell lines by agonists that increase cytosolic Ca(2+), and factors governing the adhesion of T cells to the treated cells were investigated. Thrombin, ionophore A23187 and the Ca(2+)-ATPase inhibitor 2, 5-di-tert-butyl-1,4-benzohydroquinone each induced a PS-dependent adhesion of Jurkat T cells. A23187, which was the most effective agonist in releasing PS-bearing microvesicles, was the least effective in inducing the PS-dependent adhesion of Jurkat cells. Treatment of ECV304 and EA.hy926 cells with EGTA, followed by a return to normal medium, resulted in an influx of Ca(2+) and an increase in adhering Jurkat cells. Oxidised low-density lipoprotein induced a procoagulant response in cultured ECV304 cells and increased the number of adhering Jurkat cells, but adhesion was not inhibited by pretreating ECV304 cells with annexin V. PS was not significantly exposed on untreated Jurkat cells, as determined by flow cytometry with annexin V-FITC. However, after adhesion to thrombin-treated ECV304 cells for 10 min followed by detachment in 1 mM EDTA, there was a marked exposure of PS on the Jurkat cells. Binding of annexin V-FITC to the detached cells was inhibited by pretreating them with unlabelled annexin V. Contact with thrombin-treated ECV304 cells thus induced the exposure of PS on Jurkat cells and, as Jurkat cells were unable to adhere to thrombin-treated ECV304 cells in the presence of EGTA, the adhesion of the two cell types may involve a Ca(2+) bridge between PS on both cell surfaces. The number of T cells from normal, human peripheral blood that adhered to ECV304 cells was not increased by treating the latter with thrombin. However, findings made with several T cell lines were generally, but not completely, consistent with the possibility that adhesion to surface PS on endothelial cells may be a feature of T cells that express both CD4(+) and CD8(+) antigens. Possible implications for PS-dependent adhesion of T cells to endothelial cells in metastasis, and early in atherogenesis, are discussed.  相似文献   

13.
Shmygol A  Wray S 《Cell calcium》2005,37(3):215-223
Release of Ca2+ from sarcoplasmic reticulum (SR) is one of the most important mechanisms of smooth muscle stimulation by a variety of physiologically active substances. Agonist-induced Ca2+ release is considered to be dependent on the Ca2+ content of the SR, although the mechanism underlying this dependence is unclear. In the present study, the effect of SR Ca2+ load on the amplitude of [Ca2+]i transients elicited by application of the purinergic agonist ATP was examined in uterine smooth muscle cells isolated from pregnant rats. Measurement of intraluminal Ca2+ level ([Ca2+]L) using a low affinity Ca indicator, mag-fluo-4, revealed that incubation of cells in a high-Ca2+ (10 mM) extracellular solution leads to a substantial increase in [Ca2+]L (SR overload). However, despite increased SR Ca2+ content this did not potentiate ATP-induced [Ca2+]i transients. Repetitive applications of ATP in the absence of extracellular Ca2+, as well as prolonged incubation in Ca2+-free solution without agonist, depleted the [Ca2+]L (SR overload). In contrast to overload, partial depletion of the SR substantially reduced the amplitude of Ca2+ release. ATP-induced [Ca2+]i transients were completely abolished when SR Ca2+ content was decreased below 80% of its normal value indicating a steep dependence of the IP3-mediated Ca2+ release on the Ca2+ load of the store. Our results suggest that in uterine smooth muscle cells decrease in the SR Ca2+ load below its normal resting level substantially reduces the IP3-mediated Ca2+ release, while Ca2+ overload of the SR has no impact on such release.  相似文献   

14.
The action of inositol 1,4,5-trisphosphate (InsP3) in releasing intracellular Ca2+ is shown to be competitively and potently antagonized by the glycosaminoglycan, heparin. Using either permeabilized cells of the DDT1MF-2 smooth muscle cell line, or an isolated microsomal membrane fraction derived from intact cells, heparin (4-6 kDa) at 10 micrograms/ml was observed to completely block the action of InsP3 in releasing Ca2+ accumulated via the ATP-dependent Ca2+ pump. In permeabilized cells, heparin had no effect on Ca2+ pump activity or on passive Ca2+ fluxes contributing to equilibrium Ca2+ accumulation. Heparin up to 100 micrograms/ml had no effect on the GTP-activated Ca2+ translocation process previously characterized in this cell line. Half-maximal inhibition of Ca2+ release activated by 10 microM InsP3 occurred with heparin at approximately 0.6 and 0.2 microgram/ml in permeabilized cells and isolated microsomes, respectively. Using microsomes, InsP3 dose-response curves in the presence and absence of 0.2 microgram/ml heparin (approximately 40 nM) revealed a 10-fold increase in apparent Km for InsP3 (0.31 microM in the absence of heparin) with no change in Vmax, indicating a competitive action of heparin. The results revealed a very high apparent affinity of heparin for the InsP3 active site, with a calculated Ki value of 2.7 nM. Heparin was shown to rapidly (within 20 s) reverse prior full activation of InsP3-mediated Ca2+ release returning the Ca2+ equilibrium back to that observed without InsP3. This reversal occurs even after prolonged (6 min) InsP3 activation. These results indicate a specific, high affinity, and competitive antagonism of the InsP3 active site by heparin. The rapidly induced reversal of InsP3-activated Ca2+ release by heparin strongly suggests that InsP3 directly activates a channel which remains open only while InsP3 is associated and closes immediately upon InsP3 dissociation.  相似文献   

15.
PC12 cells, a cloned rat pheochromocytoma cell line, were treated with digitonin to render the plasma membrane permeable to ions and proteins. At a cell density of 2-6 X 10(5) cells/cm2, incubation with 7.5 microM digitonin permitted a Ca2+-dependent release of 25-40% of the catecholamine within 18 min in the presence of 10 microM Ca2+. Half-maximal secretion occurred at 0.5-1 microM Ca2+. PC12 cultures at lower cell densities were more sensitive to digitonin and gave more variable results. Secretion in the presence of digitonin and Ca2+ began after a 2-min lag and continued for up to 30 min. When cells were treated for 3 min in digitonin and then stimulated with Ca2+ in the absence of digitonin, secretion occurred in the same manner but without the initial lag. Optimal secretion from PC12 cells was also dependent upon the presence of Mg2+ and ATP. Permeabilized PC12 cells exhibited a slow time-dependent loss of secretory responsiveness which was correlated with the release of a cytosolic marker, lactate dehydrogenase (134 kDa). This suggests that digitonin permeabilization allows soluble constituents necessary for secretion to leave the cell in addition to allowing Ca2+ and ATP access into the cell interior. Ca2+-dependent secretion was completely inhibited by exposure of digitonin-permeabilized cells to 100 micrograms/ml trypsin (27 kDa), whereas secretion was only slightly inhibited by trypsin exposure prior to digitonin treatment. Thus, an intracellular, trypsin-sensitive protein is probably involved in secretion. The data also indicate that the same population of digitonin-treated cells which responded to Ca2+ was permeable to a 27-kDa protein. 1,2-Dioctanoylglycerol and phorbol esters which activate protein kinase C enhanced the Ca2+-dependent and Ca2+-independent secretion in digitonin-permeabilized PC12 cells. Thus, protein kinase C appears to be involved in the regulation of catecholamine secretion from permeabilized PC12 cells.  相似文献   

16.
The coupling between depolarization-induced calcium entry and neurotransmitter release was studied in rat brain neurons in culture. The endogenous dopamine content of the cells was determined by high performance liquid chromatography utilizing electrochemical detection. The amount of dopamine in unstimulated cells was found to be about 16 ng/mg of protein. Depolarization of the neurons by elevated K+ caused a Ca2+-dependent release of dopamine from the cells. Following 1 min of depolarization, the cellular dopamine content and the amount of [3H]dopamine in cells preloaded with the radioactive transmitter were reduced by 35%. The release of [3H]dopamine by the neurons was measured at 1.5-6-s intervals by a novel rapid dipping technique. Depolarization in the presence of Ca2+ (1.8 mM) enhanced the rate of neurotransmitter release by 90-fold (0.072 +/- 0.003 s-1) over the basal release in the presence of Ca2+. The evoked release consisted of a major rapidly terminating phase (t1/2 = 9.6 s) which comprised about 40% of the neurotransmitter content of the cells and a subsequent slower efflux (t1/2 = 575 s) which was observed during following prolonged depolarization. Predepolarization of the cells in the absence of extracellular Ca2+ did not affect the kinetics of the evoked release. The fast evoked release could be re-elicited in the cells after 20 min "rest" in reference low K+ buffer. The effects of varying the extracellular Ca2+ concentrations on the kinetic parameters of the evoked release were measured. The amount of neurotransmitter released during the fast kinetic phase was very sensitive to the external Ca2+ (from 0% in the absence of Ca2+ to 40% of the neurotransmitter content at Ca2+ 0.3 mM). The rate constant of the fast release did not depend on the extracellular Ca2+, whereas the rate constant of the slow release increased from 0.0004 +/- 0.0001 s-1 at 0.4 mM Ca2+ to 0.0012 +/- 0.0002 s-1 at 0.8 mM Ca2+. The fast evoked release was inhibited by verapamil in a concentration-dependent manner. By contrast, verapamil enhanced the basal and the slow release independent of the presence of Ca2+. Both fast and slow phases of the evoked release were blocked by Co2+. Addition of Co2+ within the first 6 s after the onset of depolarization inhibited the fast release but failed to do so when added later on.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Prostaglandin-E2 (PGE2) is known to trigger suicidal death of nucleated cells (apoptosis) and enucleated erythrocytes (eryptosis). In erythrocytes PGE2 induced suicidal cell death involves activation of nonselective cation channels leading to Ca2+ entry followed by cell shrinkage and triggering of Ca2+ sensitive cell membrane scrambling with phosphatidylserine (PS) exposure at the cell surface. The present study was performed to explore whether PGE2 induces apoptosis of nucleated cells similarly through cation channel activation and to possibly disclose the molecular identity of the cation channels involved. To this end, Ca2+ activity was estimated from Fluo3 fluorescence, mitochondrial potential from DePsipher fluorescence, phosphatidylserine exposure from annexin binding, caspase activation from caspAce fluorescence, cell volume from FACS forward scatter, and DNA fragmentation utilizing a photometric enzyme immunoassay. Stimulation of K562 human leukaemia cells with PGE2 (50 microM) increased cytosolic Ca2+ activity, decreased forward scatter, depolarized the mitochondrial potential, increased annexin binding, led to caspase activation and resulted in DNA fragmentation. Gene silencing of the Ca2+-permeable transient receptor potential cation channel TRPC7 significantly blunted PGE2-induced triggering of PS exposure and DNA fragmentation. In conclusion, K562 cells express Ca2+-permeable TRPC7 channels, which are activated by PGE2 and participate in the triggering of apoptosis.  相似文献   

18.
Presenilins (PS) are proteins involved in the pathogenesis of autosomal-dominant familial cases of Alzheimer's disease. Mutations in PS are known to induce specific alterations in cellular Ca2+ signaling which might be involved in the pathogenesis of neurodegenerative diseases. Mouse embryonic fibroblasts (MEF) deficient in PS1 and PS2 (PS DKO) as well as the latter rescued with PS1 (Rescue), were used to investigate the underlying mechanism of these alterations in Ca2+ signaling. PS DKO cells were characterized by a decrease in the [Ca2+]ER as measured by ER-targeted aequorin luminescence and an increased level of type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). The lower [Ca2+]ER was associated with an increase in a Ca2+ leak from the ER. The increased IP3R1 expression and the concomitant changes in ER Ca2+ handling were reversed in the Rescue cells. Moreover using RNA-interference mediated reduction of IP3R1 we could demonstrate that the up-regulation of this isoform was responsible for the increased Ca2+ leak and the lowered [Ca2+]ER PS DKO cells. Finally, we show that the decreased [Ca2+]ER in PS DKO cells was protective against apoptosis.  相似文献   

19.
Intracellular signal transduction pathways involved in ATP release evoked by angiotensin II (Ang II) were investigated in cultured guinea pig Taenia coli smooth muscle cells. Ang II (0.3-1 microM) elicited substantial release of ATP from the cells, but not from a human fibroblast cell line. However, Ang II even at 10 microM failed to cause a leakage of lactate dehydrogenase (LDH) from the smooth muscle cells. The release of ATP by Ang II was suppressed by 10 microM SC52458, an AT1 receptor antagonist, not by 10 microM PD123319, an AT2 receptor antagonist. The evoked release of ATP was almost completely inhibited in the presence of 10 microM U73122, a phospholipase C inhibitor, and 0.5 microM thapsigargin, a Ca2+-ATPase inhibitor. Furthermore, the release was hampered by 50 microM BAPTA/AM, an intracellular Ca2+ chelator, but not by 0.1 microM nifedipine, a voltage gated Ca2+ channel inhibitor. The basal release of ATP was increased by BAPTA/AM, but was reduced by U-73122. Ang II enhanced instantaneously inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) accumulation in the cells. The enhancing effect was perfectly antagonized by SC52458. These findings suggest that intracellular Ca2+ signals activated via stimulation of Ins(1,4,5)P3 receptor are involved in the release of ATP evoked by Ang II.  相似文献   

20.
Clostridium perfringens type A enterotoxin(500 ng/ml) induced extensive release of noradrenaline (1/3-2/3 of the total cell content) from PC12 cells in 2-4 min in the presence, but not the absence of extracellular Ca2+. Cells treated with toxin in the absence of Ca2+ released noradrenaline promptly on subsequent addition of Ca2+ to the medium. The amount of noradrenaline released depended on the concentrations of both Ca2+ and toxin in the medium (ED50, 0.3 mM and 420 ng/ml respectively). Ca2+ could be replaced by Ba2+ or Sr2+, and Mn2+ or Co2+, which are Ca2+ channel blockers, did not inhibit the release of the transmitter. These findings are discussed in relation to the systemic effects of enterotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号