首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+ sensitivity of liver gelactin-induced actin gelation was reinvestigated by low-shear viscosity using the falling-ball technique. By this technique, we demonstrate that the gelatin of actin by gelactin can be influenced by the presence of calcium ions depending on the concentrations of both proteins, actin and gelactin. At low concentrations of gelactin, the gelatin of actin exhibits a bell-shaped dependency on free calcium ion concentration, being stimulated between pCa 8 and 6 and inhibited at pCa below 5.5, while at high gelactin concentrations the calcium sensitivity of actin gelation is apparently abolished. Although the sensitivity observed in the physiological range of calcium concentrations may be of importance in vivo, the sensitivity observed at higher calcium concentrations more probably reflects the state of actin polymerization in different ionic conditions. These results confirm our previous conclusions on the peculiarity of gelactin as an F-actin cross-linker.  相似文献   

2.
The gelation reaction of 100 000 g supernatants of sarcoma 180 homogenates has been investigated in an attempt to delineate the factors which are important in the reaction. Gel filtration and sucrose density gradient centrifugation indicate that actin-binding protein is in the form of a membrane-bound complex in the 100 000 g supernatants prior to gelation. When the sarcoma 100 000 g supernatants are warmed to room temperature, gelation occurs. Three major proteins are concentrated in the gel: actin, ABP and a component (E) which barely penetrates dodecyl sulfate polyacrylamide gels. Proteolysis of the 100 000 g supernatants enhances the rate of gelation and eliminates the temperature dependence. At 4 °C the enhancement of gelation by protease occurs without substantial cleavage of ABP or actin. Proteolysis does not enhance actin polymerization under the same conditions. The combined results of these experiments suggest that the temperature and proteolysis effects do not occur directly on the gelation reaction, but rather on factors controlling the ABP or actin interactions necessary for gelation.  相似文献   

3.
A homodimer protein consisting of two 38,000 dalton peptides was isolated from a murine leukemia cell line (M1). The binding molar ratio of the 38K-dimer protein to purified skeletal muscle actin was saturated at 1:3, and when the 38K-dimer/actin ratio exceeded 1:12, gelation occurred. This gelation was completely inhibited by the presence of either 10 mM KCl or 20 mM NaCl. The protein induced actin filament bundling, which required a higher 38K-dimer/actin ratio and was not affected by the presence of monovalent cations. During the differentiation of Ml cells, the sensitivity of the 38K protein to monovalent cations was decreased; that is 20 mM KCl or 50 mM NaCl was required to inhibit the gelation by the 38K protein isolated from differentiated cells. On the other hand, the intracellular K+ content of Ml cells decreased from 70 +/- 5 mM to 18 +/- 3 mM, and Na+ increased from 10 +/- 5 mM to 40 +/- 10 mM during the differentiation. These findings suggest that the differentiation brought about conditions favourable for the 38K protein to induce actin gelation, and in turn, the locomotive and phagocytic activities which were induced only after differentiation in this cell line.  相似文献   

4.
Cell extracts of a murine leukemia cell line, M1, apparently contain three kinds of actin-gelation factors; a filamin-like protein, and 38K-dimer and 105K-dimer proteins. Unlike gelation by the filamin-like protein, gelation by the latter two proteins is inhibited by low concentrations of KCl. Our study of the 38K protein has been reported elsewhere (Takagi, K. et al., J. Biochem. Tokyo 97, 605-616, 1985). We here describe the purification and characterization of the 105K protein. The 105K protein differs from the alpha-actinin group of proteins in its antigenicity, peptide components and Ca2+-insensitivity. The saturated binding ratio of the protein to purified skeletal muscle actin is 1:8; when this ratio exceeds 1:20, gelation takes place. This gelation is inhibited completely by the presence of 25 mM KCl. Electron microscopy revealed that, in the absence of KCl, the 105K protein/actin mixture forms short actin bundles that are accompanied by a meshwork of short single filaments. The presence of 25 mM KCl did not prevent actin-bundling, but the bundles became longer and the meshwork of short filaments was no longer present.  相似文献   

5.
Low concentrations (greater than or equal to 10(-7) M) of cytochalasin B reversibly inhibit the temperature-dependent gelation of actin by an actin-binding protein. The cytochalasin B concentrations which maximally inhibit actin gel formation are 10-fold lower than the concentrations which maximally impair phagocytosis by intact macrophages. Cytochalasin B also prevents the polymerization of monomeric actin in sucrose extracts of macrophages in the absence but not the presence of 0.1 M CKl. 10(-6) M cytochalasin B dissolves macrophage extract gels and gels comprised of purified actin and actin-binding protein by dissociating actin-binding protein from actin filaments. This concentration of cytochalasin B, however, does not depolymerize the actin filatments.  相似文献   

6.
Proteolysis of cytoplasmic extracts of sarcoma 180 and MAT-C1 adenocarcinoma ascites cells enhances the rate of gelation. Only high molecular weight polypeptides, including actin binding protein and myosin, are cleaved during the process; actin is not cleaved. In MAT-B1 adenocarcinoma extracts the gelation rate was not enhanced by proteolysis and actin binding protein was not readily cleaved. Electrophoretic comparisons of trypsin-treated and untreated extracts of MAT-B1 and MAT-C1 cells show that actin binding protein is the only readily discernible polypeptide which is cleaved in the C1 cells but not in the B1 cells. These results suggest that actin binding protein may act as an inhibitor of gelation.  相似文献   

7.
Caldesmon, calmodulin-, and actin-binding protein of chicken gizzard did not affect the process of polymerization of actin induced by 0.1 M KCl. Caldesmon binds to F-actin, thus inhibiting the gelation action of actin binding protein (ABP; filamin). Low shear viscosity and flow birefringence measurements revealed that in a system of calmodulin, caldesmon, ABP, and F-actin, gelation occurs in the presence of micromolar Ca2+ concentrations, but not in the absence of Ca2+. Electron microscopic observations showed the Ca2+-dependent formation of actin bundles in this system. These results were interpreted by the flip-flop mechanism: in the presence of Ca2+, a calmodulin-caldesmon complex is released from actin filaments on which ABP exerts its gelating action. On the other hand, in the absence of Ca2+, caldesmon remains bound to actin filaments, thus preventing the action of ABP.  相似文献   

8.
We compared the effects of human filamin A (FLNa) and the activated human Arp2/3 complex on mechanical properties of actin filaments. As little as 1 FLNa to 800 polymerizing actin monomers induces a sharp concentration-dependent increase in the apparent viscosity of 24 microm actin, a parameter classically defined as a gel point. The activated Arp2/3 complex, at concentrations up to 1:25 actins had no detectable actin gelation activity, even in the presence of phalloidin, to stabilize actin filaments against debranching. Increasing the activated Arp2/3 complex to actin ratio raises the FLNa concentration required to induce actin gelation, an effect ascribable to Arp2/3-mediated actin nucleation resulting in actin filament length diminution. Time lapse video microscopy of microparticles attached to actin filaments or photoactivation of fluorescence revealed actin filament immobilization by FLNa in contrast to diffusion of Arp2/3-branched actin filaments. The experimental results support theories predicting that polymer branching absent cross-linking does not lead to polymer gelation and are consistent with the observation that cells deficient in actin filament cross-linking activity have unstable surfaces. They suggest complementary roles for actin branching and cross-linking in cellular actin mechanics in vivo.  相似文献   

9.
A protein which cross-links actin filaments in a nucleotide-sensitive manner has been purified to homogeneity from Acanthamoeba castellanii. This protein, GF-210, is a slightly asymmetric molecule composed of six subunits, each with an apparent mass of 35,000 Da. As determined by the method of falling ball vicometry, GF-210 was shown to cross-link actin filaments at hexamer:actin molar ratios of 1:500, with gelation occurring at molar ratios of 1:300 and higher. Actin gels did not form in the presence of 10 microM ATP, and filament cross-linking was completely inhibited by 100 microM ATP. Although ATP was the most effective inhibitor of actin filament cross-linking, other phospho-compounds including ADP, GTP, sodium phosphate, and sodium pyrophosphate prevented gelation at concentrations lower than 1.5 mM. In contrast, 50 mM KCl was required to inhibit the formation of actin networks. Direct binding studies showed that GF-210 binds to F-actin with a KD of 1.2 microM in the absence of ATP but with a KD of 72.8 microM in the presence of 2 mM ATP. This weakening of the interaction between F-actin and GF-210 may explain the inhibition of GF-210-induced actin cross-linking by nucleotides and other phospho-compounds.  相似文献   

10.
Cytochalasin B and the structure of actin gels   总被引:36,自引:0,他引:36  
We analyzed the structure of gels formed when macrophage actin-binding protein crosslinks skeletal muscle actin polymers and the effect of the fungal metabolite cytochalasin B on this structure. Measurement of the actin filament length distribution permitted calculation of the critical concentration of crosslinker theoretically required for gelation of actin polymer networks. The experimentally determined critical concentration of actin-binding protein agreed sufficiently with the theoretical to conclude that F-actin-actin-binding protein gels are networks composed of isotropically oriented filaments crosslinked at intervals. The effects of cytochalasin B on these actin networks fits this model. Cytochalasin B (1) bound to F-actin (but not to actin-binding protein), (2) decreased the length of actin filaments without increasing the quantity of monomeric actin, (3) decreased the rigidity of actin networks both in the presence and absence of crosslinking proteins and (4) increased the critical concentration of actin-binding protein required for incipient gelation by a magnitude predicted from network theory if filaments were divided and shortened by the extents observed. The effects of cytochalasin B on gelation were highly dependent on actin concentration and were inhibited by the actin-stabilizing agent phalloidin. Therefore, cytochalasin B diminishes actin gel structure by severing actin filaments at limited sites. The demonstration of gel-sol transformations in actin networks caused by limited actin filament cleavage suggests a new mechanism for the control of cytoplasmic structure.  相似文献   

11.
Chicken gizzard filamin has been digested with purified Ca2+-activated protease. The subunits of (Mr = 250,000) of the protein are cleaved asymmetrically into two fragments, heavy merofilamin, Mr = 240,000, and light merofilamin, Mr = 9,500. Digestion is complete at substrate to enzyme ratios of 100:1 and requires Ca2+ concentrations in excess of 0.3 mM. Heavy merofilamin binds to F-actin as evidenced by cosedimentation with F-actin, by direct observation under the electron microscope, and by its ability to inhibit actin activation of heavy meromyosin ATPase. Heavy merofilamin does not form a gel when mixed with actin, except at very low concentrations of KCl. Thus, actin binding and gelation are separable activities of filamin. We speculate that Ca2+-stimulated proteolysis may play a role in the regulation of actin-filamin interactions.  相似文献   

12.
Ca2+-sensitive regulatory protein of human platelets which inhibits the gelation of actin was purified by DEAE-Sepharose and an affinity column using actin as a ligand. The protein was a single polypeptide chain with an average molecular weight of 90,000 and it bound to actin and inhibited its gelation at concentration from 10?6–10?7M of free calcium. Since the protein existed in the form of a complex with actin even though at concentration lower than 10?7M of free calcium, binding and dissociation of actin and the protein appeared to be dependent on the concentration of free calcium, and complete dissociation was not seen.  相似文献   

13.
Phosphatidylinositol 4,5-bisphosphate (PIP2) reorganizes actin filaments by modulating the functions of a variety of actin-regulatory proteins. Until now, it was thought that bound PIP2 is hydrolyzed only by tyrosine-phosphorylated phospholipase Cgamma (PLCgamma) after the activation of tyrosine kinases. Here, we show a new mechanism for the hydrolysis of bound PIP2 and the regulation of actin filaments by PIP2 phosphatase (synaptojanin). We isolated a 150-kDa protein (p150) from brains that binds the SH3 domains of Ash/Grb2. The sequence of this protein was found to be homologous to that of synaptojanin. The expression of p150 in COS 7 cells produces a decrease in the number of actin stress fibers in the center of the cells and causes the cells to become multinuclear. On the other hand, the expression of a PIP2 phosphatase-negative mutant does not disrupt actin stress fibers or produce the multinuclear phenotype. We have also shown that p150 forms the complexes with Ash/Grb2 and epidermal growth factor (EGF) receptors only when the cells are treated with EGF and that it reorganizes actin filaments in an EGF-dependent manner. Moreover, the PIP2 phosphatase activity of native p150 purified from bovine brains is not inhibited by profilin, cofilin, or alpha-actinin, although PLCdelta1 activity is markedly inhibited by these proteins. Furthermore, p150 suppresses actin gelation, which is induced by smooth muscle alpha-actinin. All these data suggest that p150 (synaptojanin) hydrolyzes PIP2 bound to actin regulatory proteins, resulting in the rearrangement of actin filaments downstream of tyrosine kinase and Ash/Grb2.  相似文献   

14.
We purified 47,000-dalton proteins from both thrombin-stimulated and unstimulated human platelets. The purity of the protein was almost 80% on SDS-polyacrylamide gel electrophoresis. The protein obtained from unstimulated platelets strongly inhibited actin gelation when its molar ratio to actin was 1:200 or higher. The protein obtained from thrombin-stimulated platelets had no inhibitory activity. The results suggest that the 47,000-dalton protein modulates actin polymerization through phosphorylation.  相似文献   

15.
Various proteins related to cell contraction have been extracted from human platelets. Of these, a protein (48K) with the molecular weight of 48,000 and one with the molecular weight of 47,000 (P47) often migrate together with actin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We studied the biochemical characteristics of the 48K protein, purified by actin affinity and DEAE-Sepharose chromatography. The 48K protein did not react with anti-actin antibody or peroxidase-labelled actin. The protein inhibited the calcium-dependent gelation of actin. The 48K protein seemed to be a regulatory protein involving cell contraction not identified before.  相似文献   

16.
Myosin-like protein and actin-like protein from E. coli formed filaments very similar in structure to those of myosin and actin from skeletal muscle. At 0.2 M KCl, a large number of "thick filaments" of uniform size (about 0.6-0.7 micron long and about 20 nm wide) was present. These thick filaments aggregated as the KCl concentration decreased to less than 0.2 M. Filaments of actin-like protein were decorated with muscle heavy meromyosin, showing "arrowheads". The arrowhead structure disappeared in the presence of ATP. A mixture of E. coli myosin-like protein and rabbit skeletal actin exhibited a gelation phenomenon on the additon of ATP. The phenomenon was reversible and showed ATP specificity. However, the gelation phenomenon was not observed with the mixture of E. coli actin-like protein and E. coli myosin-like protein. These results provide compelling evidence that the E. coli myosin-like protein and actin-like protein we isolated are essentially identical to myosin and actin, respectively.  相似文献   

17.
Actin-membrane interactions have been studied using purified liver plasma membranes and muscular filamentous actin. Despite the large quantity of endogenous actin present in membranes, exogenous muscular filamentous actin cosediments with membranes after a 30 min centrifugation at 30 000 g. The cosedimentation process is time-dependent and exhibits a complex relationship with actin concentration. The cosedimentation of actin with membranes can be partly explained by gelation as shown by low-shear viscosity and electron microscopy. The characterization of the gelation phenomenon as a function of time, actin and membrane concentrations, ionic strength, temperature and Ca2+ concentration is also presented. Gelation alone cannot however account for the overall cosedimentation data, and a more direct mode of association between actin and the membrane must be envisaged. The analogy that exists between the results obtained with liver plasma membranes and those obtained with other membrane systems suggests that a general mechanism may be involved in the interaction of actin with plasma membranes.  相似文献   

18.
The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although uncapping of barbed ends by capping protein has been proposed as a mechanism for the generation of free barbed ends after stimulation, in vitro and in situ analysis of the association of capping protein with the actin cytoskeleton after stimulation reveals that capping protein enters, but does not exit, the cytoskeleton during the initiation of actin polymerization. Increased association of capping protein with regions of the cell containing free barbed ends as visualized by exogenous rhodamine-labeled G-actin is also observed after stimulation. An approximate threefold increase in the number of filaments with free barbed ends is accompanied by increases in absolute filament number, whereas the average filament length remains constant. Therefore, a mechanism in which preexisting filaments are uncapped by capping protein, in response to stimulation leading to the generation of free barbed ends and filament elongation, is not supported. A model for actin assembly after stimulation, whereby free barbed ends are generated by either filament severing or de novo nucleation is proposed. In this model, exposure of free barbed ends results in actin assembly, followed by entry of free capping protein into the actin cytoskeleton, which acts to terminate, not initiate, the actin polymerization transient.  相似文献   

19.
Ehrlich ascites tumor cell extracts form a gel when warmed to 25 degrees C at pH 7.0 in sucrose solution, and the gel rapidly becomes a sol when cooled to 0 degrees C. This gel-sol transformation was studied quantitatively by determining the volume or the total protein of pellets of gel obtained by low-speed centrifugation. The gelation depended on nucleotide triphosphates, Mg2+, KCl, and a reducing agent. Gelation was inhibited reversibly by 0.5 microM free Ca2+, and 25--50 ng/ml of either cytochalasin B or D, but it was not affected by 10 mM colchicine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the gel was composed of six major proteins with mol wt greater than 300,000, 270,000, 89,000, 51,000, 48,000, and 42,000 daltons. The last component was identified as cell actin because it had the same molecular weight as muscle actin and bound with muscle myosin and tropomyosin. The role of actin in gelation was studied by use of actin-inhibitors. Gelation was inhibited by a chemically modified subfragment-1 of myosin, which binds with F-actin even in the presence of ATP, and by bovine pancreatic DNase I, which tightly binds with G-actin. Muscle G-actin neutralized the inhibitory effect of DNase I when added at an equimolar ratio to the latter, and it also restored gelation after its inhibition by DNase I. These findings suggest that gelation depends on actin. However, the extracts showed temperature-dependent, cytochalasin-sensitive, and Ca2+-regulated gelation as did the original extracts when the cell actin in the extracts was replaced by muscle actin, suggesting that components other than cell actin might be responsible for these characteristics of the gelation.  相似文献   

20.
A recent report by Bretscher [(1984) J. Biol. Chem. 259, 12873-12880] showed that caldesmon prepared by his method crosslinks actin filaments to form thick bundles. This is in contrast to the results of previous work that caldesmon binds to F-actin but does not cause any gelation [(1981) Proc. Natl. Acad. Sci. USA 78, 5652-5655]. The present work clearly showed that caldesmon purified according to Bretscher does not cause any gelation of F-actin. However, caldesmon aggregates formed by concentration or by freeze-thawing gelated F-actin to form bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号