首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Phytochemistry》1986,25(11):2489-2492
An acid endoribonuclease isolated from corn leaf tissues was purified 530 times. Gel electrophoresis indicated that the enzyme was homogeneous. The enzyme showed an optimum pH at 5.5 and an apparent molecular weight of 32 000. Corn RNase attacks natural RNAs and synthetic polyribonucleotides and the relative rate of degradation was poly U > yeast RNA > E. coli tRNA > poly A ⪢ poly C. Zn2+, Mg2+, Mn2+ and EDTA inhibited the enzyme activity. No stimulation by K+ was observed. Cu2+ and heparin had no effect on the activity. The results suggest that the investigated RNase differs from other known corn ribonucleases.  相似文献   

2.
RNase R is a highly processive, hydrolytic 3′-5′ exoribonuclease belonging to the RNB/RNR superfamily which plays significant roles in RNA metabolism in bacteria. The enzyme was observed to be essential for growth of the psychrophilic Antarctic bacterium Pseudomonas syringae Lz4W at a low temperature. We present results here pertaining to the biochemical properties of RNase R and the RNase R-encoding gene (rnr) locus from this bacterium. By cloning and expressing a His6-tagged form of the P. syringae RNase R (RNase RPs), we show that the enzyme is active at 0 to 4°C but exhibits optimum activity at ∼25°C. The enzyme is heat labile in nature, losing activity upon incubation at 37°C and above, a hallmark of many psychrophilic enzymes. The enzyme requires divalent cations (Mg2+ and Mn2+) for activity, and the activity is higher in 50 to 150 mM KCl when it largely remains as a monomer. On synthetic substrates, RNase RPs exhibited maximum activity on poly(A) and poly(U) in preference over poly(G) and poly(C). The enzyme also degraded structured malE-malF RNA substrates. Analysis of the cleavage products shows that the enzyme, apart from releasing 5′-nucleotide monophosphates by the processive exoribonuclease activity, produces four-nucleotide end products, as opposed to two-nucleotide products, of RNA chain by Escherichia coli RNase R. Interestingly, three ribonucleotides (ATP, GTP, and CTP) inhibited the activity of RNase RPs in vitro. The ability of the nonhydrolyzable ATP-γS to inhibit RNase RPs activity suggests that nucleotide hydrolysis is not required for inhibition. This is the first report on the biochemical property of a psychrophilic RNase R from any bacterium.  相似文献   

3.
Poly(A) polymerase activity is induced during vaccinia virus infection of HeLa cells. The enzyme is maximally induced at 3.5 h postinfection. Partial purification frees the preparation of RNase activity and RNA polymerase activity. ATP is the substrate for poly(A) synthesis. A small amount of poly(A) is produced from added adenosine diphosphate due to the production of ATP by an adenylate kinase present in the preparation. The incorporation of ATP into poly(A) is dependent on divalent cations (Mg2+ or Mn2+) and is not inhibited by UTP, CTP, or GTP. Poly(U) stimulates ATP incorporation; poly(A) and poly(C) have little effect on ATP incorporation, and poly(dT) is extremely inhibitory. RNA prepared from HeLa cells and from the partially purified poly(A) polymerase (the enzyme preparation contains endogenous RNA [Brakel and Kates]) stimulates ATP incorporation by poly(A) polymerase which was subjected to DEAE-cellulose chromatography. RNase's, pancreatic and T1, inhibit the production of poly(A). DNase has little effect. Poly(U) is able to stimulate poly(A) production in the presence of T1 RNase.  相似文献   

4.
RNase E is a major intracellular endoribonuclease in many bacteria and participates in most aspects of RNA processing and degradation. RNase E requires a divalent metal ion for its activity. We show that only Mg2+ and Mn2+ will support significant rates of activity in vitro against natural RNAs, with Mn2+ being preferred. Both Mg2+ and Mn2+ also support cleavage of an oligonucleotide substrate with similar kinetic parameters for both ions. Salts of Ni2+ and Zn2+ permitted low levels of activity, while Ca2+, Co3+, Cu2+, and Fe2+ did not. A mutation to one of the residues known to chelate Mg2+, D346C, led to almost complete loss of activity dependent on Mg2+; however, the activity of the mutant enzyme was fully restored by the presence of Mn2+ with kinetic parameters fully equivalent to those of wild-type enzyme. A similar mutation to the other chelating residue, D303C, resulted in nearly full loss of activity regardless of metal ion. The properties of RNase E D346C enabled a test of the ionic requirements of RNase E in vivo. Plasmid shuffling experiments showed that both rneD303C (i.e., the rne gene encoding a D-to-C change at position 303) and rneD346C were inviable whether or not the selection medium was supplied with MnSO4, implying that RNase E relies on Mg2+ exclusively in vivo.  相似文献   

5.
Since its initial characterization, Escherichia coli RNase I has been described as a single-strand specific RNA endonuclease that cleaves its substrate in a largely sequence independent manner. Here, we describe a strong calcium (Ca2+)-dependent activity of RNase I on double-stranded RNA (dsRNA), and a Ca2+-dependent novel hybridase activity, digesting the RNA strand in a DNA:RNA hybrid. Surprisingly, Ca2+ does not affect the activity of RNase I on single stranded RNA (ssRNA), suggesting a specific role for Ca2+ in the modulation of RNase I activity. Mutation of a previously overlooked Ca2+ binding site on RNase I resulted in a gain-of-function enzyme that is highly active on dsRNA and could no longer be stimulated by the metal. In summary, our data imply that native RNase I contains a bound Ca2+, allowing it to target both single- and double-stranded RNAs, thus having a broader substrate specificity than originally proposed for this traditional enzyme. In addition, the finding that the dsRNase activity, and not the ssRNase activity, is associated with the Ca2+-dependency of RNase I may be useful as a tool in applied molecular biology.  相似文献   

6.
RNase activity from Chlorella was partially purified. Two RNase activities were demonstrated, one soluble and the other ribosomal. The effects on ribonuclease activity of variations in pH and temperature, and of Mg2+, Na+, and mononucleotides were examined. The RNase activities (phosphodiesterases EC 3.1.4.23) were both endonucleolytic, releasing oligonucleotides, and cyclic nucleotide intermediates, but exhibited different specificities in releasing mononucleotides from RNA. The ribosomal activity released 3′-GMP, and after prolonged incubation 3′-UMP, but the soluble activity released 3′-GMP, 3′-AMP and 3′-UMP. Neither ofthe RNase preparations hydrolysed DNA, nor released 5′-nucleotides from RNA. Increased ribosomal RNase activity was related to dissociation of ribosomes, and latency of ribosomal RNase activity was demonstrated. The possible in vivo distribution of RNases is discussed.  相似文献   

7.
An improved method for the isolation of polysomes from synchronous macroplasmodia of Physarum polycephalum is described. The procedure involves preincubation and homogenization of the macroplasmodia in high ionic strength media supplemented with high concentrations of Mg2+ and ethylene glycol bis (β-aminoethyl ether) N,N′-tetraacetic acid. The polysomes recovered from plasmodial postmitochondrial lysates or heavy particle fractions prepared in this way are sensitive to RNase and EDTA and more than 90% of the total single ribosome population is present as polysomes. The polysomes obtained could also be utilized as a beginning point for the isolation of poly(A)-containing RNA which showed a mass average sedimentation value of 18 S. The development of a satisfactory procedure for the isolation of intact polysomes and poly(A)-containing RNA from macroplasmodia should facilitate studies on mRNA metabolism and translational activity during a naturally synchronous mitotic division cycle.  相似文献   

8.
The paralogous endoribonucleases, RNase E and RNase G, play major roles in intracellular RNA metabolism in Escherichia coli and related organisms. To assay the relative importance of the principal RNA binding sites identified by crystallographic analysis, we introduced mutations into the 5′-sensor, the S1 domain, and the Mg+2/Mn+2 binding sites. The effect of such mutations has been measured by assays of activity on several substrates as well as by an assay of RNA binding. RNase E R169Q and the equivalent mutation in RNase G (R171Q) exhibit the strongest reductions in both activity (the kcat decrease ∼40- to 100-fold) and RNA binding consistent with a key role for the 5′-sensor. Our analysis also supports a model in which the binding of substrate results in an increase in catalytic efficiency. Although the phosphate sensor plays a key role in vitro, it is unexpectedly dispensable in vivo. A strain expressing only RNase E R169Q as the sole source of RNase E activity is viable, exhibits a modest reduction in doubling time and colony size, and accumulates immature 5 S rRNA. Our results point to the importance of alternative RNA binding sites in RNase E and to alternative pathways of RNA recognition.  相似文献   

9.
DNase I and proteinase K are two enzymes commonly used in the purification of highly polymerized RNA. In the presence of EDTA DNase I is rapidly inactivated by proteinase K while in 10 mm Ca2+ DNase is totally immune to proteinase K inactivation even at protease concentrations of up to 1 mg/ml. RNase A, a common contaminant of “RNase-free” DNase was inactivated by proteinase K in the presence or absence of Ca2+. Treatment of DNase I with proteinase K in the presence of Ca2+ selectively removed RNase A activity as judged by rRNA and poly(A+ RNA ribosomal RNA degradation monitored by sucrose gradient centrifugation. These results suggest that (i) DNase A and proteinase K can be used together in the presence of Ca2+ to obtain better digestion of nucleoprotein complexes, and (ii) proteinase K treatment of Ca2+ DNase can be used to selectively remove contaminating RNase.  相似文献   

10.
A double-stranded RNA specific nuclease (ds RNase) has been purified from the pearl milletPennisetum typhoides. The purification involved S-30 preparation from the germinating embryos, DEAE-cellulose and DNA-cellulose chromatography. The partially pure enzyme preferentially solubilized the synthetic double-stranded polynucleotide [3H]poly(rA) · poly(rU); the degradation of [3H]poly(rC) was fourteen fold lower under the same assay conditions. Further more, the ds RNase activity was inhibited to an extent of 58% by ethidium bromide, which is known to intercalate with double-stranded RNAs. Active sulfhydryl groups were found to be necessary for the ds RNase activity since the enzyme action was inhibited by N-ethylmaleimide. Ethidium bromide and N-ethyl-maleimide did not significantly inhibit the ss RNase activity. In contrast, diethyl pyrocarbonate inhibited ss RNase activity completely and ds RNase by 58%. Heating the enzyme for 20 min at 50°C resulted in drastic loss of both enzyme activities. The ds RNase showed maximum activity in the pH range of 6.5 to 7.5. The enzyme actsin vitro onE. coli 30S precursor ribosomal RNA and the cleavage products migrated in the region of mature 23S and 16S rRNAs.  相似文献   

11.
Nuclease Stn α from Streptomyces thermonitrificans hydrolyses DNA and RNA at the rate of approximately 10:l. The optimum pH and temperature for RNA hydrolysis were 7.0 and 45°C. The RNase activity of nuclease Stn α had neither an obligate requirement of metal ions nor was it activated in the presence of metal ions. The enzyme was inhibited by Zn2+, Mg2+, Co2+, and Ca2+; inorganic phosphate; pyrophosphate; NaCl; KCl; and metal chelators. It was stable at high concentrations of urea but susceptible to low concentrations of Sodium dodecyl sulfate and guanidine hydrochloride. The rates by which nuclease Stn α hydrolysed polyribonucleotides occurs in the order of poly A >> RNA >> poly U > poly G > poly C. The enzyme cleaved RNA to 3′ mononucleotides with preferential liberation of 3′AMP, indicating it to be an adenylic acid preferential endonuclease.  相似文献   

12.
Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment. RNase activity was low in cotyledons of quiescent seeds, but the enzyme was activated during germination and seedling establishment. Salinity reduced cotyledon RNase activity, and this effect appeared to be due to a delay in its activation. The RNases from roots, stems, and leaves were immunologically identical to that found in cotyledons. Partially purified RNase fractions from the different parts of the seedling showed some activity with DNA as substrate. However, this DNA hydrolyzing activity was much lower than that of RNA hydrolyzing activity. The DNA hydrolyzing activity was strongly inhibited by Cu2+, Hg2+, and Zn2+ ions, stimulated by MgCl2, and slowly inhibited by EDTA. This activity from the most purified fraction was inhibited by increasing concentrations of RNA in the reaction medium. It is suggested that the major biological role of this cotyledon RNase would be to hydrolyze seed storage RNA during germination and seedling establishment, and it was discussed that it might have a protective role against abiotic stress during later part of seedling establishment.  相似文献   

13.
The stored poly(A) + RNA from zoospores of the aquatic fungus Blastocladiella emersonii represents 2.5% of the total RNA and has a model MW of 425,000 daltons and an average poly(A) isostich of 32 bases. The poly(A) + RNA also represents 2.5% of the total RNA from early growth phase cells and has a modal MW of 360,000 daltons and an average poly(A) isostich of 38 bases. The poly(A) + RNA from spores and 2-hr plants contains a structure resistant to RNases T1, T2, and A, which can be labeled with 32PO4 and which will bind to DBAE-cellulose. These characteristics strongly suggest that both the zoospore poly(A) + RNA and the 2-hr cell poly(A) + RNA are capped at the 5′ end; and, hence, it is unlikely that capping is involved in the control of protein synthesis during germination.Approximately 80% of the poly(A) + RNA of the spore is located in the membrane-enclosed ribosomal nuclear cap, and more than 90% of the poly(A) + RNA within the cap is found in the 80S monoribosome and heavier fractions.Synthesis of new poly(A) + RNA occurs very early during zoospore germination, and the labeled poly(A) + RNA rapidly enters the newly organized polysomes. The labeling data for early germination also suggest that cytoplasmic polyadenylation occurs.  相似文献   

14.
The effect of Escherichia coli ribosomal protein S1 on translation has been studied in S1-depleted systems programmed with poly(U), poly(A) and MS2 RNA3. The translation of the phage RNA depends strictly on the presence of S1. Optimum poly(U)-directed polyphenylalanine synthesis and poly(A)-programmed polylysine synthesis also require S1. Excess S1 relative to ribosomes and messenger RNA results in inhibition of translation of MS2 RNA and poly(U), but not of poly (A). In the case of phage RNA translation, this inhibition can be counteracted by increasing the amount of messenger RNA. Three other 30 S ribosomal proteins (S3, S14 and S21) are also shown to inhibit MS2 RNA translation. The effects of S1 on poly(U) translation were studied in detail and shown to be very complex. The concentration of Mg2+ in the assay mixtures and the ratio of S1 relative to ribosomes and poly(U) are crucial factors determining the response of this translational system towards the addition of S1. The results of this study are discussed in relation to recent developments concerning the function of this protein.  相似文献   

15.
Three distinct nuclease activities, degrading double-stranded substrates, were isolated from the ribosomal salt wash fraction of Ehrlich ascites tumor cells. One of them is an absolutely Mn2+-dependent RNase H, capable of degrading the polyribonucleotide strand of a poly(A) · poly(dT) hybrid only. The other two nuclease activities are: a Mg2+-dependent RNase H and a Mn2+-dependent ribonuclease, specific for double-stranded RNA. These two activities were inseparable by DEAE-cellulose and phosphocellulose chromatography and both were completely inhibited by 20 mmN-ethymaleimide. It is possible that one protein molecule is responsible for the two activities, depending on the nature of the metal ion, though the existence of two different enzyme molecules is not excluded. The three activities are most probably of extranucleolar origin. A function for the double-stranded RNA-specific enzyme is suggested in the processes regulating protein synthesis. The role of the RNase H activities isolated from the ribosomal salt wash fraction is unclear.  相似文献   

16.
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5′ leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250–500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10–20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.  相似文献   

17.
Human eosinophil-derived neurotoxin (EDN) or RNase 2, found in the non-core matrix of eosinophils is a ribonuclease belonging to the Ribonuclease A superfamily. EDN manifests a number of bioactions including neurotoxic and antiviral activities, which are dependent on its ribonuclease activity. The core of the catalytic site of EDN contains various base and phosphate-binding subsites. Unlike many members of the RNase A superfamily, EDN contains an additional non-catalytic phosphate-binding subsite, P−1. Although RNase A also contains a P−1 subsite, the composition of the site in EDN and RNase A is different. In the current study we have generated site-specific mutants to study the role of P−1 subsite residues Arg36, Asn39, and Gln40 of EDN in its catalytic activity. The individual mutation of Arg36, Asn 39, and Gln40 resulted in a reduction in the catalytic activity of EDN on poly(U) and poly(C). However, there was no change in the activities on yeast tRNA and dinucleotide substrates. The study shows that the P−1 subsite is crucial for the ribonucleolytic activity of EDN on polymeric RNA substrates. Deepa Sikriwal and Divya Seth contributed equally to this work.  相似文献   

18.
The archaea possess RNase H proteins that share features of both prokaryotic and eukaryotic forms. Although the Sulfolobus RNase HI has been reported to have unique structural and biochemical properties, its RNase HII has not yet been investigated and its biochemical properties remain unknown. In the present study, we have characterized the ST0519 RNase HII from S. tokodaii as a new form. The enzyme utilized hybrid RNA/DNA as a substrate and had an optimal temperature between 37 and 50°C. The activity of wild-type protein was stimulated by Mn2+, whereas this cation significantly inhibited the activity of C-terminal truncated mutant proteins. A series of mutation assays revealed a regulatory C-terminal tail in the S. tokodaii RNase HII. One mutant, ST0519 (residues 1–195), retained only partial activity, while ST0519 (residues 1–196) completely lost its activity. Based on the presumed structure, the C-terminus might form a short α-helix in which two residues, I195 and L196, are essential for the cleavage activity. Our data suggest that the C-terminal α-helix is likely involved in the Mn2+-dependent substrate cleavage activity through stabilization of a flexible loop structure. Our findings offer important clues for further understanding the structure and function of both archaeal and eukaryotic RNase HII.  相似文献   

19.
Escherichia coli ribonuclease III (RNase III; EC 3.1.24) is a double-stranded(ds)-RNA-specific endonuclease with key roles in diverse RNA maturation and decay pathways. E.coli RNase III is a member of a structurally distinct superfamily that includes Dicer, a central enzyme in the mechanism of RNA interference. E.coli RNase III requires a divalent metal ion for activity, with Mg2+ as the preferred species. However, neither the function(s) nor the number of metal ions involved in catalysis is known. To gain information on metal ion involvement in catalysis, the rate of cleavage of the model substrate R1.1 RNA was determined as a function of Mg2+ concentration. Single-turnover conditions were applied, wherein phosphodiester cleavage was the rate-limiting event. The measured Hill coefficient (nH) is 2.0 ± 0.1, indicative of the involvement of two Mg2+ ions in phosphodiester hydrolysis. It is also shown that 2-hydroxy-4H-isoquinoline-1,3-dione—an inhibitor of ribonucleases that employ two divalent metal ions in their catalytic sites—inhibits E.coli RNase III cleavage of R1.1 RNA. The IC50 for the compound is 14 μM for the Mg2+-supported reaction, and 8 μM for the Mn2+-supported reaction. The compound exhibits noncompetitive inhibitory kinetics, indicating that it does not perturb substrate binding. Neither the O-methylated version of the compound nor the unsubstituted imide inhibit substrate cleavage, which is consistent with a specific interaction of the N-hydroxyimide with two closely positioned divalent metal ions. A preliminary model is presented for functional roles of two divalent metal ions in the RNase III catalytic mechanism.  相似文献   

20.
The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulselabeled with [35S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg2+, and Cu2+, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号