首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fletcher TM 《IUBMB life》2003,55(8):443-449
Telomeres, nucleoprotein complexes at the end of eukaryotic chromosomes, have vital roles in chromosome integrity. Telomere chromatin structure is both intricate and dynamic allowing for a variety of responses to several stimuli. A critical determinant in telomere structure is the G-strand overhang. Facilitated by telomeric proteins, the G-strand overhang stabilizes telomere higher-order assemblies most likely by adopting unusual DNA structures. These structures influence activities that occur at the chromosome end. Dysfunctional telomeres induce signals resulting in cell growth arrest or death. To overcome telomere dysfunction, cancer cells activate the DNA polymerase, telomerase. The presence of telomerase at the telomere may establish a particular telomeric state. If the chromosome ends of cancer and normal cells exist in different states, cancer-specific telomere structures would offer a unique chemotherapeutic target.  相似文献   

3.
Telomeres are essential elements of eukaryotic chromosomes that differentiate native chromosome ends from deleterious DNA double-strand breaks (DSBs). This is achieved by assembling chromosome termini in elaborate high-order nucleoprotein structures that in most organisms encompass telomeric DNA, specific telomere-associated proteins as well as general chromatin and DNA repair factors. Although the individual components of telomeric chromatin are evolutionary highly conserved, cross species comparisons have revealed a remarkable flexibility in their utilization at telomeres. This review outlines the strategies used for chromosome end protection and maintenance in mammals, yeast and flies and discusses current progress in deciphering telomere structure in plants.  相似文献   

4.
Telomeres are specialized structures at the ends of linear chromosomes that were originally defined functionally based on observations first by Muller (1938) and subsequently by McClintock (1941) that naturally occurring chromosome ends do not behave as double-stranded DNA breaks, in spite of the fact that they are the physical end of a linear, duplex DNA molecule. Double-stranded DNA breaks are highly unstable entities, being susceptible to nucleolytic attack and giving rise to chromosome rearrangements through end-to-end fusions and recombination events. In contrast, telomeres confer stability upon chromosome termini, as evidenced by the fact that chromosomes are extraordinarily stable through multiple cell divisions and even across evolutionary time. This protective function of telomeres is due to the formation of a nucleoprotein complex that sequesters the end of the DNA molecule, rendering it inaccessible to nucleases and recombinases as well as preventing the telomere from activating the DNA damage checkpoint pathways. The capacity of a functional end-protective complex to form is dependent upon maintenance of sufficient telomeric DNA. We have learned a great deal about telomere structure and how this specialized nucleoprotein complex confers stability on chromosome ends since the original observations that defined telomeres were made. This review summarizes our current understanding of mammalian telomere replication, structure and function.  相似文献   

5.
The telomeric nucleoprotein complex protects linear chromosome ends from degradation. In contrast to most eukaryotes in which telomerase is responsible for telomere elongation by adding short DNA repeats synthesized using an RNA template, the telomere elongation in Drosophila involves transposition of specialized telomeric retroelements onto chromosome ends. Proteins that bind telomeric and subtelomeric sequences form specific telomeric chromatin, and its components are highly conserved among organisms employing different mechanisms of telomere elongation. This review is focused on the analysis of components of the Drosophila telomeric complex and its comparison with telomeric proteins in telomerase-encoded organisms. Structural and functional analysis of Drosophila telomeres suggests that there are three distinct chromatin regions: protective structure at the very end of chromosome (cap), subtelomeric region which is characterized by condensed chromatin structure, and the terminal retrotransposon array whose expression is under the control of an RNAi (RNA interference)-based mechanism. The link between RNAi and telomeric chromatin formation in germinal tissues is discussed.  相似文献   

6.
Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends.  相似文献   

7.
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell.  相似文献   

8.
In eukaryotes, terminal chromosome repeats are bound by a specialized nucleoprotein complex that controls telomere length and protects chromosome ends from DNA repair and degradation. In mammals the “shelterin” complex mediates these central functions at telomeres. In the recent years it has become evident that also the heterochromatic structure of mammalian telomeres is implicated in telomere length regulation. Impaired telomeric chromatin compaction results in a loss of telomere length control. Progressive telomere shortening affects chromatin compaction at telomeric and subtelomeric repeats and activates alternative telomere maintenance mechanisms. Dynamics of chromatin structure of telomeres during early mammalian development and nuclear reprogramming further indicates a central role of telomeric heterochromatin in organismal development. In addition, the recent discovery that telomeres are transcribed, giving rise to UUAGGG-repeat containing TelRNAs/TERRA, opens a new level of chromatin regulation at telomeres. Understanding the links between the epigenetic status of telomeres, TERRA/TelRNA and telomere homeostasis will open new avenues for our understanding of organismal development, cancer and ageing.  相似文献   

9.
Telomeres are nucleoprotein complexes that cap the end of eukaryotic chromosomes. They are essential for the functions and the stability of the genomes. In the absence of telomerase, the enzyme that adds telomeric DNA repeats to chromosome ends, telomeres shorten with cell division, a process thought to contribute to cell senescence. Reciprocally, telomere stabilization in immortalized cells, that usually appears concomitant with detection of telomerase activity, suggests that telomerase is essential for unlimited cell proliferation. Sequential modifications in the function of telomeres play antagonistic functions as far as tumorigenesis is concerned. Telomere dysfunction is thought to promote genome instability at initial stages, favoring the emergence of cancer-associated chromosomal abnormalities; reestablishment of telomere maintenance is expected afterwards if efficient cell cycling is to occur.  相似文献   

10.
The physical ends of eukaryotic chromosomes form a specialized nucleoprotein complex composed of DNA and DNA binding proteins. This nucleoprotein complex, termed the telomere, is essential for chromosome stability. In most organisms, the DNA portion of the nucleoprotein complex consists of simple tandem DNA repeats with one strand guanine rich. The protein portion of the complex is less well understood. The experiments presented in two recent papers(1,2) represent different stages in the characterization of the telomeric DNA binding proteins. The first paper presents a structure-function study of the Oxytricha telomeric DNA binding proteins and the second paper shows the identification and initial characterization of a telomeric DNA binding activity from Xenopus laevis. These two reports provided valuable information in understanding the structure and function of telomeres.  相似文献   

11.
Chromosome end protection is essential for all organisms with linear genomes. Specialized structures, called telomeres, accomplish this protection by forming DNA-protein complexes that hide the natural chromosome ends from the DNA damage machinery. In mammalian cells protection takes place on several levels. Telomeric DNA forms large duplex loops with the help of telomeric proteins, consequently hiding the very tip of the telomere. Telomeric proteins play additional roles in protecting the end from degradation, regulating telomere length, and suppressing the DNA damage response machinery. Here we summarize the current knowledge about telomere structure, and discuss the future directions of the field.  相似文献   

12.
Telomeres are nucleoprotein structures that cap the ends of chromosomes and thereby protect their stability and integrity. In the presence of telomerase, the enzyme that synthesizes telomeric repeats, telomere length is controlled primarily by Rap1p, the budding yeast telomeric DNA binding protein which, through its C-terminal domain, nucleates a protein complex that limits telomere lengthening. In the absence of telomerase, telomeres shorten with every cell division, and eventually, cells enter replicative senescence. We have set out to identify the telomeric property that determines the replicative capacity of telomerase-deficient budding yeast. We show that in cells deficient for both telomerase and homologous recombination, replicative capacity is dependent on telomere length but not on the binding of Rap1p to the telomeric repeats. Strikingly, inhibition of Rap1p binding or truncation of the C-terminal tail of Rap1p in Kluyveromyces lactis and deletion of the Rap1p-recruited complex in Saccharomyces cerevisiae lead to a dramatic increase in replicative capacity. The study of the role of telomere binding proteins and telomere length on replicative capacity in yeast may have significant implications for our understanding of cellular senescence in higher organisms.  相似文献   

13.
Telomeres are specialized nucleoprotein complexes that provide protection to the ends of eukaryotic chromosomes. Telomeric DNA consists of tandemly repeated G-rich sequences that terminate with a 3′ single-stranded overhang, which is important for telomere extension by the telomerase enzyme. This structure, as well as most of the proteins that specifically bind double and single-stranded telomeric DNA, are conserved from yeast to humans, suggesting that the mechanisms underlying telomere identity are based on common principles. The telomeric 3′ overhang is generated by different events depending on whether the newly synthesized strand is the product of leading- or lagging-strand synthesis. Here, we review the mechanisms that regulate these processes at Saccharomyces cerevisiae and mammalian telomeres.  相似文献   

14.
Telomeres are the protein-nucleic acid structures at the ends of eukaryote chromosomes. Tandem repeats of telomeric DNA are templated by the RNA component (TER1) of the ribonucleoprotein telomerase. These repeats are bound by telomere binding proteins, which are thought to interact with other factors to create a higher-order cap complex that stabilizes the chromosome end. In the budding yeast Kluyveromyces lactis, the incorporation of certain mutant DNA sequences into telomeres leads to uncapping of telomeres, manifested by dramatic telomere elongation and increased length heterogeneity (telomere deregulation). Here we show that telomere deregulation leads to enlarged, misshapen "monster" cells with increased DNA content and apparent defects in cell division. However, such deregulated telomeres became stabilized at their elongated lengths upon addition of only a few functionally wild-type telomeric repeats to their ends, after which the frequency of monster cells decreased to wild-type levels. These results provide evidence for the importance of the most terminal repeats at the telomere in maintaining the cap complex essential for normal telomere function. Analysis of uncapped and capped telomeres also show that it is the deregulation resulting from telomere uncapping, rather than excessive telomere length per se, that is associated with DNA aberrations and morphological defects.  相似文献   

15.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

16.
Telomeres help maintain genome integrity by protecting natural chromosome ends from being recognized as damaged DNA. When telomeres become dysfunctional, they limit replicative lifespan and prevent outgrowth of potentially cancerous cells by activating a DNA damage response that forces cells into senescence or apoptosis. On the other hand, chromosome ends devoid of proper telomere protection are subject to DNA repair activities that cause end-to-end fusions and, when cells divide, extensive genomic instability that can promote cancer. While telomeres represent unique chromatin structures with important roles in cancer and aging, we have limited understanding of the way telomeres and the response to their malfunction are controlled at the level of chromatin. Accumulating evidence indicates that different types of posttranslational modifications act in both telomere maintenance and the response to telomere uncapping. Here, we discuss the latest insights on posttranslational control of telomeric chromatin, with emphasis on ubiquitylation and SUMOylation events.  相似文献   

17.
18.
David Lydall 《The EMBO journal》2009,28(15):2174-2187
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell‐cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell‐cycle division are discussed.  相似文献   

19.
Zein SS  Levene SD 《Biochemistry》2005,44(12):4817-4828
Telomeric DNA sequences in human cells and those of other vertebrates consist of long d(TTAGGG) repeats. In somatic cells, telomeres shorten every cell division with shortening serving as a mitotic clock that counts cell divisions and ultimately results in cellular senescence. Telomere length is principally maintained by a ribonucleoprotein, telomerase. However, a non-negligible proportion of human cells use a recombination-based mechanism for telomere maintenance, termed alternative maintenance of telomeres (ALT). Although the molecular mechanism of ALT is not known, GT-rich sequences in prokaryotes and eukaryotes display high levels of recombination relative to those of non-GT-rich DNA. We show that human telomeric strand-exchange complexes mediated by Escherichia coli RecA protein differ from those formed with nontelomeric sequences. Moreover, telomeric strand-exchange intermediates, unlike those involving nontelomeric sequences, exhibit a tendency to form higher-order nucleoprotein structures. We propose that the strong DNA unwinding activity inherent in the assembly of the RecA strand-exchange complex promotes the formation of alternative DNA structures at human telomeric loci. Organization of these noncanonical structures into higher-order complexes involving multiple DNA duplexes could facilitate the search for homology on different DNA molecules and provide a framework for understanding recombination-dependent mechanisms of telomere maintenance.  相似文献   

20.
Telomeres are specialized caps of nucleoprotein complexes located at the chromosome termini. They consist of short DNA repeats and of an assortment of associated proteins whose function is currently under intense investigation in model systems. These specialized structures protect the linear ends of eukaryotic chromosomes against DNA repair and degradation activities, and serve as the substrate for telomerase, the ribonucleoprotein complex that synthesises the telomere repeats. The pivotal role of the telomeres in the maintenance of cell viability in several model eukaryotes, including humans, greatly promoted research in telomere biology. Studies on telomere structure and function in fungi other than model systems are limited to providing information on the telomeric repeat sequences. Here, we have summarized the current knowledge on the organization of chromosome ends and on the proteins participating in telomere function in model systems including recent information obtained for filamentous fungi. We also describe Ustilago maydis genes that are potential homologs of proteins known from other systems to participate in telomere biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号