首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.  相似文献   

2.
Natural killer (NK) cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR) family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.  相似文献   

3.
NK cells and cancer   总被引:5,自引:0,他引:5  
In this review, we overview the main features and functions of NK cells, focusing on their role in cell-mediated immune response to tumor cells. In parallel, we discuss the information available in the field of NK cell receptors and offer a wide general overview of functional aspects of cell targeting and killing, focusing on the recent acknowledgments on the efficacy of NK cells after cytokine and mAb administration in cancer therapy. Since efficacy of NK cell-based immunotherapy has been proven in KIR-mismatch regimens or in TRAIL-dependent apoptosis, the ability to manipulate the balance of activating and inhibitory receptors on NK cells and of their cognate ligands, as well as the sensitivity of tumor cells to apoptosis, opens new perspectives for NK cell-based immunotherapy.  相似文献   

4.
Natural killer (NK) cells from certain rat strains promptly kill MHC allogeneic lymphocytes in vivo, a rejection phenomenon termed allogeneic lymphocyte cytotoxicity (ALC). ALC can be reproduced in vitro, and is preferentially mediated by a subset of NK cells expressing the Ly49 stimulatory receptor 3 (Ly49s3) in PVG strain rats. Functional studies have suggested that Ly49s3 triggers NK cell alloreactivity, but its importance relative to other Ly49 receptors has not been investigated. In this study, we have characterized three rat Ly49 receptors with close sequence similarity to Ly49s3 in the extracellular region, i.e., Ly49s4, Ly49 inhibitory receptor 3 (Ly49i3), and Ly49i4. Similar to Ly49s3, Ly49s4 mediated cellular activation while Ly49i4 inhibited NK cytolytic function. Ly49s4, -i3, and -i4 all reacted with a previously described anti-Ly49s3 monoclonal antibody (mAb) (DAR13), but not a novel mAb (STOK6), which was shown to be specific for Ly49s3. Expression of these Ly49 receptors varied markedly between inbred strains, in patterns related to their NK gene complex (NKC) haplotype, and ability to mediate ALC. Three major groups of NKC haplotypes could be discerned by restriction fragment length polymorphism analysis. Ly49s3 was present in strains from one of the groups, which corresponded with the “high” ALC responders. Ly49s3 surface expression was also markedly reduced in the presence of its putative MHC class Ib ligand(s) in MHC congenic strains. These data support the notion that Ly49s3 functions as a triggering MHC receptor both in vitro and in vivo. MHC ligands for the other three Ly49 receptors remain to be determined.  相似文献   

5.
自然杀伤细胞(NK细胞)可表达两类功能相悖的识别受体,即活化受体(KAR)和抑制受体(KIR)。KIR能识别自身细胞上的MHCⅠ类分子与自身或外来肽形成2的复合物,所产生的抑制信号可阴断KAR的活化,以此抑制NK细胞的细胞毒作用。如果靶细胞失去KIR所识别的配体,NK细胞即可通过KAR对靶细胞进行攻击。本文将介绍此类受体的结构及基识别与信号转导机制的研究进展。  相似文献   

6.
Natural killer (NK) cells are innate lymphocytes that participate in the early control of viruses and tumors. The function of NK cells is under tight regulation by two complementary inhibitory receptor families that bind to classical and non-classical HLA class I molecules: the CD94/NKG2A receptors and the killer cell immunoglobulin-like receptors (KIRs). In this mini-review, recent data on the structure of human NK cell receptor repertoires and its relation to functional responses and tolerance to self are discussed. We propose that no active selection is required to generate diverse NK cell repertoires characterized by a dominant expression of receptors with specificity for self-HLA class I. Instead, the primary consequence of interactions with HLA class I molecules is a functional tuning of randomly generated NK cell repertoires.  相似文献   

7.
Natural killer (NK) cells represent a highly specialized lymphoid population characterized by a potent cytolytic activity against tumor or virally infected cells. Their function is finely regulated by a series of inhibitory or activating receptors. The inhibitory receptors, specific for major histocompatibility complex (MHC) class I molecules, allow NK cells to discriminate between normal cells and cells that have lost the expression of MHC class I (e.g., tumor cells). The major receptors responsible for NK cell triggering are NKp46, NKp30, NKp44 and NKG2D. The NK-mediated lysis of tumor cells involves several such receptors, while killing of dendritic cells involves only NKp30. The target-cell ligands recognized by some receptors have been identified, but those to which major receptors bind are not yet known. Nevertheless, functional data suggest that they are primarily expressed on cells upon activation, proliferation or tumor transformation. Thus, the ability of NK cells to lyse target cells requires both the lack of surface MHC class I molecules and the expression of appropriate ligands that trigger NK receptors.  相似文献   

8.
Natural killer (NK) cell activation is strictly regulated to ensure that healthy cells are preserved, but tumour-transformed or virus-infected cells are recognized and eliminated. To carry out this selective killing, NK cells have an ample repertoire of receptors on their surface. Signalling by inhibitory and activating receptors by interaction with their ligands will determine whether the NK cell becomes activated and kills the target cell. Here, we show reduced expression of NKp46, NKp30, DNAM-1, CD244 and CD94/NKG2C activating receptors on NK cells from acute myeloid leukaemia patients. This reduction may be induced by chronic exposure to their ligands on leukaemic blasts. The analysis of ligands for NK cell-activating receptors showed that leukaemic blasts from the majority of patients express ligands for NK cell-activating receptors. DNAM-1 ligands are frequently expressed on blasts, whereas the expression of the NKG2D ligand MICA/B is found in half of the patients and CD48, a ligand for CD244, in only one-fourth of the patients. The decreased expression of NK cell-activating receptors and/or the heterogeneous expression of ligands for major receptors on leukaemic blasts can lead to an inadequate tumour immunosurveillance by NK cells. A better knowledge of the activating receptor repertoire on NK cells and their putative ligands on blasts together with the possibility to modulate their expression will open new possibilities for the use of NK cells in immunotherapy against leukaemia.  相似文献   

9.
Tolerance and alloreactivity of the Ly49D subset of murine NK cells.   总被引:7,自引:0,他引:7  
Class I-specific stimulatory and inhibitory receptors expressed by NK cell subsets contribute to the alloreactive potential of the self-tolerant murine NK cell repertoire. In this report, we have studied potential mechanisms of tolerance to the function of the positive signaling Ly49D receptor in mice that express one of its ligands, H2-Dd. Our results demonstrate that H2-Dd-expressing mice possess a large Ly49D+ subset of NK cells that is functionally capable of rejecting bone marrow cell (BMC) allografts in vivo and lysing allogeneic Con A lymphoblasts in vitro. Also, we show that the Ly49D receptor is responsible for the ability of H2b/d F1 hybrid mice to reject H2d/d parental BMC (hybrid resistance). Thus, deletion or anergy of Ly49D+ cells in H2-Dd+ hosts cannot explain self tolerance. Our functional studies revealed that coexpression of the Dd-specific Ly49A or Ly49G2 inhibitory receptors by Ly49D+ cells resulted in tolerance to Dd+ targets, while coexpression of Kb-specific inhibitory receptors Ly49C/I resulted in tolerance to Kb+ targets. Only in H2d/d cells did Ly49C/I dominantly inhibit Ly49D-Dd stimulation. This correlated with an increased mean fluorescence intensity of Ly49C expression, as well as an increased percentage of Ly49C+ cells in the Ly49D+A/G2- compartment. Therefore, we conclude that self tolerance of the Ly49D subset can be achieved through coexpression of a sufficient level of self-specific inhibitory receptors.  相似文献   

10.
NK cell receptors: emerging roles in host defense against infectious agents   总被引:1,自引:0,他引:1  
Natural killer (NK) cells have the ability to become activated under the appropriate conditions by utilizing one or more cell surface receptors that are capable of inducing NK cell cytokine production and/or cytotoxicity. The expression of a variable array of inhibitory receptors on the surface of NK cells acts to counterbalance the positive signals initiated through activating receptors. Increasing evidence suggests an important role for both activating and inhibitory NK cell receptors in an appropriate and controlled NK response to infectious agents.  相似文献   

11.
Cutting edge: NTB-A activates NK cells via homophilic interaction   总被引:2,自引:0,他引:2  
NK cells are an important component of the innate immune system. Their activity is tightly regulated by activating and inhibitory surface receptors. However, the exact functions of many activating surface receptors, as well as their ligands, still remain to be elucidated. NTB-A is a receptor on the surfaces of human NK, T, and B cells, mediating a signal whose malfunction may be involved in X-linked lymphoproliferative disease. However, the ligand of NTB-A has remained elusive so far. Using trimeric recombinant proteins, we now show that NTB-A is its own ligand. Homophilic interaction of NTB-A enhances NK cell cytotoxicity and influences NK cell proliferation and IFN-gamma secretion. We suggest that NTB-A is an interlymphocyte signaling molecule, which serves to orchestrate the activities of immune cells.  相似文献   

12.
Natural killer cells are important players of the innate immunity. In humans, they express HLA-class I-specific inhibitory receptors including the allotypic-specific KIR and various activating receptors. In most instances, in an autologous setting NK cells do not kill self cells. In contrast, in an allogeneic setting as the haploidentical hematopoietic stem cell transplantation to cure high risk leukemias, donor-derived NK cells may express inhibitory KIR that are not engaged by the HLA-class I alleles (KIR ligands) expressed by recipient cells. Such "alloreactive" NK cells may be responsible for the eradication of leukemia blasts escaping the preparative regimen, residual host dendritic cells and T lymphocytes, thus preventing leukemia relapse, GvHD and graft rejection, respectively. These NK-mediated effects result in a sharp improvement of the estimated 5 years survival.  相似文献   

13.
Background NK cell activity is regulated in part by inhibitory receptors that bind to MHC class I molecules. It is possible to enhance NK cell cytotoxicity against tumor cells by preventing the interaction of these inhibitory receptors with their MHC class I ligands. Results In this study, we determined that Ly49G2 is an inhibitory receptor in AKR mice for self-MHC class I, and AKR Ly49G2 has an identical sequence to BALB/c Ly49G2. Blockade of Ly49G2 receptors in vivo resulted in decreased growth of BW-Sp3 lymphoma cells when the tumor cells were given i.v. but not when the tumor cells were inoculated into the flank forming a solid tumor. However, NK cells were involved in inhibiting the growth of BW-Sp3 tumor cells in the flank. Conclusion These data demonstrate that the effectiveness of inhibitory receptor blockade depends upon the tissue location of the tumor cells.  相似文献   

14.
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.  相似文献   

15.
NK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression. Unexpectedly, although these clones expressed NKG2D and mediated a strong cytolytic activity toward K562, Daudi and allogeneic MHC-class I+ carcinoma cells, they were unable to lyse the autologous MHC-I- tumor cell line. This defect was associated with alterations in the expression of natural cytotoxicity receptor (NCR) by NK cells and the NKG2D ligands, MHC-I-related chain A, MHC-I-related chain B, and UL16 binding protein 1, and the ICAM-1 by tumor cells. In contrast, the carcinoma cell line was partially sensitive to allogeneic healthy donor NK cells expressing high levels of NCR. Indeed, this lysis was inhibited by anti-NCR and anti-NKG2D mAbs, suggesting that both receptors are required for the induced killing. The present study indicates that the MHC-I-deficient lung adenocarcinoma had developed mechanisms of escape from the innate immune response based on down-regulation of NCR and ligands required for target cell recognition.  相似文献   

16.
The killing by natural killer (NK) cells is regulated by inhibitory, costimulatory, and activating receptors. The inhibitory receptors recognize mainly major histocompatibility complex (MHC) class I molecules, while the activating NK receptors recognize stress-induced ligands and viral products. Thus, changes in the expression of the various inhibitory and activating ligands will determine whether target cells will be killed or protected. Here, we demonstrate that after influenza virus infection the binding of the two NK inhibitory receptors, KIR2DL1 and the LIR1, to the infected cells is specifically increased. The increased binding occurs shortly after the influenza virus infection, prior to the increased recognition of the infected cells by the NK activating receptor, NKp46. We also elucidate the mechanism responsible for this effect and demonstrate that, after influenza virus infection, MHC class I proteins redistribute on the cell surface and accumulate in the lipid raft microdomains. Such redistribution allows better recognition by the NK inhibitory receptors and consequently increases resistance to NK cell attack. In contrast, T-cell activity was not influenced by the redistribution of MHC class I proteins. Thus, we present here a novel mechanism, developed by the influenza virus, of inhibition of NK cell cytotoxicity, through the reorganization of MHC class I proteins on the cell surface.  相似文献   

17.
Natural killer (NK) cells are a key component of the innate immune system, as they are able to detect microbe-infected cells, tumors as well as allogeneic cells, without specific sensitization. NK cell effector functions (cytotoxicity, cytokine secretion) are regulated by a wide array of inhibitory and activating receptors. MHC class I molecules are the ligands of most inhibitory receptors, while activating receptors recognize either pathogen-encoded molecules, or self-proteins whose expression is up-regulated upon microbial infection or tumor development. Upon integration of these negative and positive signals, Natural Killer cells can discriminate between healthy "self" (tolerance) and autologous cells undergoing different types of cellular stress or allogeneic cells (immunosurveillance). The knowledge of the different mechanisms of target cell recognition is thus crucial to dissect NK cell involvement in homeostatic and disease conditions as well as to develop novel alternative therapeutic approaches based on NK cell manipulation.  相似文献   

18.
LFA-1 contributes an early signal for NK cell cytotoxicity   总被引:11,自引:0,他引:11  
Cytotoxicity of human NK cells is activated by receptors that bind ligands on target cells, but the relative contribution of the many different activating and inhibitory NK cell receptors is difficult to assess. In this study, we describe an experimental system that circumvents some of the difficulties. Adhesion through beta2 integrin LFA-1 is a common requirement of CTLs and NK cells for efficient lysis of target cells. However, the contribution of LFA-1 to activation signals for NK cell cytotoxicity, besides its role in adhesion, is unclear. The role of LFA-1 was evaluated by exposing NK cells to human ICAM-1 that was either expressed on a Drosophila insect cell line, or directly coupled to beads. Expression of ICAM-1 on insect cells was sufficient to induce lysis by NK cells through LFA-1. Coexpression of peptide-loaded HLA-C with ICAM-1 on insect cells blocked the LFA-1-dependent cytotoxicity of NK cells that expressed HLA-C-specific inhibitory receptors. Polarization of cytotoxic granules in NK cells toward ICAM-1- and ICAM-2-coated beads showed that engagement of LFA-1 alone is sufficient to initiate activation signals in NK cells. Thus, in contrast to T cells, in which even adhesion through LFA-1 is dependent on signals from other receptors, NK cells receive early activation signals directly through LFA-1.  相似文献   

19.
Allogeneic umbilical cord blood haematopoietic stem cells (UCB-HSCs) can be transplanted into a host with the intact innate immunity with limited immuno-reaction, although the mechanisms remain unclear. The present studies aimed at investigating potential mechanisms of allogeneic UCB-HSCs escape from the cytolysis of natural killer (NK) cells. We compared UCB-HSCs ability to protect from NK-mediated cytotoxicity with peripheral blood or bone marrow haematopoietic stem cells (PB-HSCs and BM-HSCs). HSCs expressed lower levels of natural cytotoxicity receptor ligands including NKp30L, NKp44L and NKp46L than monocytes. Blocking these ligands respectively or in combination could increase the resistance of HSCs against NK cell mediated cytotoxicity. High expression of HLA-G was noticed on UCB-HSCs, rather than PB-HSCs or BM-HSCs, whereas blockade of HLA-G significantly elevated NK cell mediated cytolysis to UCB-HSCs. Thus, we conclude that natural cytotoxicity receptors and HLA-G on HSCs may contribute to the escape from NK cells, and activate and inhibitory NK cell receptors and their ligands can be novel therapeutic targets in cell transplantation.  相似文献   

20.
The immune response to influenza virus infection comprises both innate and adaptive defenses. NK cells play an early role in the destruction of tumors and virally-infected cells. NK cells express a variety of inhibitory receptors, including those of the Ly49 family, which are functional homologs of human killer-cell immunoglobulin-like receptors (KIR). Like human KIR, Ly49 receptors inhibit NK cell-mediated lysis by binding to major histocompatibility complex class I (MHC-I) molecules that are expressed on normal cells. During NK cell maturation, the interaction of NK cell inhibitory Ly49 receptors with their MHC-I ligands results in two types of NK cells: licensed (“functional”), or unlicensed (“hypofunctional”). Despite being completely dysfunctional with regard to rejecting MHC-I-deficient cells, unlicensed NK cells represent up to half of the mature NK cell pool in rodents and humans, suggesting an alternative role for these cells in host defense. Here, we demonstrate that after influenza infection, MHC-I expression on lung epithelial cells is upregulated, and mice bearing unlicensed NK cells (Ly49-deficient NKCKD and MHC-I-deficient B2m-/- mice) survive the infection better than WT mice. Importantly, transgenic expression of an inhibitory self-MHC-I-specific Ly49 receptor in NKCKD mice restores WT influenza susceptibility, confirming a direct role for Ly49. Conversely, F(ab’)2-mediated blockade of self-MHC-I-specific Ly49 inhibitory receptors protects WT mice from influenza virus infection. Mechanistically, perforin-deficient NKCKD mice succumb to influenza infection rapidly, indicating that direct cytotoxicity is necessary for unlicensed NK cell-mediated protection. Our findings demonstrate that Ly49:MHC-I interactions play a critical role in influenza virus pathogenesis. We suggest a similar role may be conserved in human KIR, and their blockade may be protective in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号