首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD) in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.  相似文献   

2.
Escherichia coli is used as a model organism for elucidation of menaquinone biosynthesis, for which a hydrolytic step from 1,4-dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) to 1,4-dihydroxy-2-naphthoate is still unaccounted for. Recently, a hotdog fold thioesterase has been shown to catalyze this conversion in phylloquinone biosynthesis, suggesting that its closest homolog, YbgC in Escherichia coli, may be the DHNA-CoA thioesterase in menaquinone biosynthesis. However, this possibility is excluded by the involvement of YbgC in the Tol-Pal system and its complete lack of hydrolytic activity toward DHNA-CoA. To identify the hydrolytic enzyme, we have performed an activity-based screen of all nine Escherichia coli hotdog fold thioesterases and found that YdiI possesses a high level of hydrolytic activity toward DHNA-CoA, with high substrate specificity, and that another thioesterase, EntH, from siderophore biosynthesis exhibits a moderate, much lower DHNA-CoA thioesterase activity. Deletion of the ydiI gene from the bacterial genome results in a significant decrease in menaquinone production, which is little affected in ΔybgC and ΔentH mutants. These results support the notion that YdiI is the DHNA-CoA thioesterase involved in the biosynthesis of menaquinone in the model bacterium.  相似文献   

3.
4.
A key reaction in the biosynthesis of menaquinone involves the conversion of the soluble bicyclic naphthalenoid compound 1,4-dihydroxy-2-naphthoic acid (DHNA) to the membrane-bound demethylmenaquinone. The enzyme catalyzing this reaction, DHNA-octaprenyltransferase, attaches a 40-carbon side chain to DHNA. The menA gene encoding this enzyme has been cloned and localized to a 2.0-kb region of the Escherichia coli genome between cytR and glpK. DNA sequence analysis of the cloned insert revealed a 308-codon open reading frame (ORF), which by deletion analyses was shown to restore anaerobic growth of a menA mutant. Reverse-phase high-performance liquid chromatography analysis of quinones extracted from the orf-complemented cells independently confirmed the restoration of menaquinone biosynthesis, and similarly, analyses of isolated cell membranes for DHNA octaprenyltransferase activity confirmed the introduction of the menA product into the orf-complemented menA mutant. The validity of an ORF-associated putative promoter sequence was confirmed by primer extension analyses.  相似文献   

5.
In this minireview, we describe the radical S-adenosylmethionine enzymes involved in the biosynthesis of thiamin, menaquinone, molybdopterin, coenzyme F420, and heme. Our focus is on the remarkably complex organic rearrangements involved, many of which have no precedent in organic or biological chemistry.  相似文献   

6.
In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates.  相似文献   

7.
8.
Coenzyme Q (ubiquinone or Q) is a redox-active lipid found in organisms ranging from bacteria to mammals in which it plays a crucial role in energy-generating processes. Q biosynthesis is a complex pathway that involves multiple proteins. In this work, we show that the uncharacterized conserved visC gene is involved in Q biosynthesis in Escherichia coli, and we have renamed it ubiI. Based on genetic and biochemical experiments, we establish that the UbiI protein functions in the C5-hydroxylation reaction. A strain deficient in ubiI has a low level of Q and accumulates a compound derived from the Q biosynthetic pathway, which we purified and characterized. We also demonstrate that UbiI is only implicated in aerobic Q biosynthesis and that an alternative enzyme catalyzes the C5-hydroxylation reaction in the absence of oxygen. We have solved the crystal structure of a truncated form of UbiI. This structure shares many features with the canonical FAD-dependent para-hydroxybenzoate hydroxylase and represents the first structural characterization of a monooxygenase involved in Q biosynthesis. Site-directed mutagenesis confirms that residues of the flavin binding pocket of UbiI are important for activity. With our identification of UbiI, the three monooxygenases necessary for aerobic Q biosynthesis in E. coli are known.  相似文献   

9.
Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidence supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database, and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional characterization in relation to cell wall biosynthesis.  相似文献   

10.
Trypanosoma cruzi flavoproteins TcCPR-A, TcCPR-B and TcCPR-C are members of the NADPH-dependent cytochrome P-450 reductase family expressed in the parasite. Epimastigotes over-expressing TcCPR-B and TcCPR-C showed enhanced ergosterol biosynthesis and increased NADP+/NADPH ratio. Transgenic parasites with augmented ergosterol content presented a higher membrane order with a corresponding diminished bulk-phase endocytosis. These results support a significant role for TcCPR-B and TcCPR-C in the sterol biosynthetic pathway and to our knowledge for the first time reveals the participation of more than one CPR in this metabolic route. Notably, TcCPR-B was found in reservosomes while TcCPR-C localised in the endoplasmic reticulum. In addition, we suggest a different role for TcCPR-A, since its over-expression is lethal, displaying cells with an increased DNA content, aberrant morphology and severe ultrastructural alterations.  相似文献   

11.
DNA-sequence analyses of avian haemosporidian parasites, primarily of passerine birds, have described the phylogenetic relationships of major groups of these parasites, which are in general agreement with morphological taxonomy. However, less attention has been paid to haemosporidian parasites of non-passerine birds despite morphological and DNA-sequence evidence for unique clades of parasites in these birds. Detection of haemosporidian parasites in the Galapagos archipelago has raised conservation concerns and prompted us to characterise the origins and diversity of these parasites in the Galapagos dove (Zenaida galapagoensis). We used partial mitochondrial cytochrome b (cyt b) and apicoplast caseinolytic protease C (ClpC) genes to develop a phylogenetic hypothesis of relationships of haemosporidian parasites infecting New World Columbiformes, paying special attention to those parasites infecting the endemic Galapagos dove. We identified a well-supported and diverse monophyletic clade of haemosporidian parasites unique to Columbiformes, which belong to the sub-genus Haemoproteus (Haemoproteus). This is a sister clade to all the Haemoproteus (Parahaemoproteus) and Plasmodium parasites so far identified from birds as well as the Plasmodium parasites of mammals and reptiles. Our data suggest that the diverse Haemoproteus parasites observed in Galapagos doves are not endemic to the archipelago and likely represent multiple recent introductions.  相似文献   

12.
The metabolism of polyamines as well as their functions as growth regulators in plants have been extensively studied for many years. However, almost nothing is known about the biosynthesis and roles of these substances in Phytomonas spp., parasites of several plants. We have used HPLC and electrophoretic analyses to investigate the presence and metabolism of polyamines in Phytomonas Jma strain, detecting both putrescine and spermidine but not spermine. Experiments carried out by incubation of intact parasites with labelled ornithine or putrescine showed the formation of radioactive putrescine or spermidine, respectively. These results indicated that Phytomonas Jma can synthesise these polyamines through the action of ornithine decarboxylase (ODC) and spermidine synthase. On the other hand, we could not detect the conversion of arginine to agmatine, suggesting the absence of arginine decarboxylase (ADC) in Phytomonas. However, we cannot ensure the complete absence of this enzymatic activity in the parasite. Phytomonas ODC required pyridoxal 5′-phosphate for maximum activity and was specifically inhibited by α-difluoromethylornithine. The metabolic turnover of the enzyme was very high, with a half-life of 10-15 min, one of the shortest found among all ODC enzymes studied to date. The parasite proteasome seems to be involved in degradation of the enzyme, since Phytomonas ODC can be markedly stabilized by MG-132, a well known proteasome inhibitor. The addition of polyamines to Phytomonas cultures did not decrease ODC activity, strongly suggesting the possible absence of antizyme in this parasite.  相似文献   

13.
Membrane protein complexes can support both the generation and utilisation of a transmembrane electrochemical proton potential (Δp), either by supporting transmembrane electron transfer coupled to protolytic reactions on opposite sides of the membrane or by supporting transmembrane proton transfer. The first mechanism has been unequivocally demonstrated to be operational for Δp-dependent catalysis of succinate oxidation by quinone in the case of the dihaem-containing succinate:menaquinone reductase (SQR) from the Gram-positive bacterium Bacillus licheniformis. This is physiologically relevant in that it allows the transmembrane potential Δp to drive the endergonic oxidation of succinate by menaquinone by the dihaem-containing SQR of Gram-positive bacteria. In the case of a related but different respiratory membrane protein complex, the dihaem-containing quinol:fumarate reductase (QFR) of the ?-proteobacterium Wolinella succinogenes, evidence has been obtained that both mechanisms are combined, so as to facilitate transmembrane electron transfer by proton transfer via a both novel and essential compensatory transmembrane proton transfer pathway (“E-pathway”). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Δp. This compensatory “E-pathway” appears to be required by all dihaem-containing QFR enzymes and results in the overall reaction being electroneutral. However, here we show that the reverse reaction, the oxidation of succinate by quinone, as catalysed by W. succinogenes QFR, is not electroneutral. The implications for transmembrane proton transfer via the E-pathway are discussed.  相似文献   

14.
Two isolates, with an optimum growth temperature of about 35-37 °C and an optimum pH for growth between 6.5 and 7.5, were recovered from a deep mineral water aquifer in Portugal. Strains form rod-shaped cells and were non-motile. These strains were non-pigmented, strictly aerobic, catalase and oxidase positive. Strains F2-233T and F2-223 assimilated carbohydrates, organic acids and amino acids. Major fatty acids were novel iso internally branched such as 17:0 iso 10-methyl, 17:0 iso and 15:0 iso 8-methyl. The peptidoglycan contained meso-diaminopimelic acid and menaquinone MK-7 was the major respiratory quinone. Analysis of the 16S rRNA gene shows the strains to cluster with species of the genera Thermoleophilum, Patulibacter, Conexibacter and Solirubrobacter to which they have pairwise sequence similarity in the range 87-88%. Based on 16S rRNA gene sequence analysis, physiological and biochemical characteristics we describe a new species of a novel genus represented by strain F2-233T (=CECT 7815T = LMG 26412T) for which we propose the name Gaiella occulta gen. nov., sp. nov. We also propose that this organism represents a novel family named Gaiellaceae fam. nov. of a novel order named Gaiellales ord. nov.  相似文献   

15.
The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.  相似文献   

16.
The reversible redox chemistry of coenzyme Q serves a crucial function in respiratory electron transport. Biosynthesis of Q in Escherichia coli depends on the ubi genes. However, very little is known about UbiX, an enzyme thought to be involved in the decarboxylation step in Q biosynthesis in E. coli and Salmonella enterica. Here we characterize an E. coli ubiX gene deletion strain, LL1, to further elucidate E. coli ubiX function in Q biosynthesis. LLI produces very low levels of Q, grows slowly on succinate as the sole carbon source, accumulates 4-hydroxy-3-octaprenyl-benzoate, and has reduced UbiG O-methyltransferase activity. Expression of either E. coli ubiX or the Saccharomyces cerevisiae ortholog PAD1, rescues the deficient phenotypes of LL1, identifying PAD1 as an ortholog of ubiX. Our results suggest that both UbiX and UbiD are required for the decarboxylation of 4-hydroxy-3-octaprenyl-benzoate in E. coli coenzyme Q biosynthesis, especially during logarithmic growth.  相似文献   

17.
We developed a new method to measure iron reduction at a distance based on depositing Fe(III) (hydr)oxide within nanoporous glass beads. In this “Fe-bead” system, Shewanella oneidensis reduces at least 86.5% of the iron in the absence of direct contact. Biofilm formation accompanies Fe-bead reduction and is observable both macro- and microscopically. Fe-bead reduction is catalyzed by live cells adapted to anaerobic conditions, and maximal reduction rates require sustained protein synthesis. The amount of reactive ferric iron in the Fe-bead system is available in excess such that the rate of Fe-bead reduction is directly proportional to cell density; i.e., it is diffusion limited. Addition of either lysates prepared from anaerobic cells or exogenous electron shuttles stimulates Fe-bead reduction by S. oneidensis, but iron chelators or additional Fe(II) do not. Neither dissolved Fe(III) nor electron shuttling activity was detected in culture supernatants, implying that the mediator is retained within the biofilm matrix. Strains with mutations in omcB or mtrB show about 50% of the wild-type levels of reduction, while a cymA mutant shows less than 20% of the wild-type levels of reduction and a menF mutant shows insignificant reduction. The Fe-bead reduction defect of the menF mutant can be restored by addition of menaquinone, but menaquinone itself cannot stimulate Fe-bead reduction. Because the menF gene encodes the first committed step of menaquinone biosynthesis, no intermediates of the menaquinone biosynthetic pathway are used as diffusible mediators by this organism to promote iron reduction at a distance. CymA and menaquinone are required for both direct and indirect mineral reduction, whereas MtrB and OmcB contribute to but are not absolutely required for iron reduction at a distance.  相似文献   

18.
Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed—in contrast to viable parasites—that apoptotic-like parasites enter an LC3+, autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4+ T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells´ autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.  相似文献   

19.
Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis.  相似文献   

20.
Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO product, biliverdin (BV), or its downstream metabolite, bilirubin (BR). To directly test for BV and BR production by P. falciparum parasites, we DMSO-extracted equal numbers of infected and uninfected erythrocytes and developed a sensitive LC-MS/MS assay to quantify these tetrapyrroles. We found comparable low levels of BV and BR in both samples, suggesting the absence of HO activity in parasites. We further tested live parasites by targeted expression of a fluorescent BV-binding protein within the parasite cytosol, mitochondrion, and plant-like plastid. This probe could detect exogenously added BV but gave no signal indicative of endogenous BV production within parasites. Finally, we recombinantly expressed and tested the proposed heme degrading activity of the HO-like protein, PfHO. Although PfHO bound heme and protoporphyrin IX with modest affinity, it did not catalyze heme degradation in vivo within bacteria or in vitro in UV absorbance and HPLC assays. These observations are consistent with PfHO''s lack of a heme-coordinating His residue and suggest an alternative function within parasites. We conclude that P. falciparum parasites lack a canonical HO pathway for heme degradation and thus rely fully on alternative mechanisms for heme detoxification and iron acquisition during blood stage infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号