共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
G-protein coupled receptors (GPCRs) are a protein family of outstanding pharmaceutical interest. GPCR homology models, based on the crystal structure of bovine rhodopsin, have been shown to be valuable tools in the drug-design process. The initial model is often refined by molecular dynamics (MD) simulations, a procedure that has been recently discussed controversially. We therefore analyzed MD simulations of bovine rhodopsin in order to identify contacts that could serve as constraints in the simulation of homology models. Additionally, the effect of an N-terminal truncation, the nature of the membrane mimic, the influence of varying protonation states of buried residues and the importance of internal water molecules was analyzed. All simulations were carried out using the program-package GROMACS. While N-terminal truncation negatively influenced the overall protein stability, a stable simulation was possible in both solvent environments. As regards the protonation state of titratable sites, the experimental data could be reproduced by the program UHBD (University of Houston Brownian Dynamics), suggesting its application for studying homology models of GPCRs. A high flexibility was observed for internal water molecules at some sites. Finally, interhelical hydrogen-bonding interactions could be derived, which can now serve as constraints in the simulations of GPCR homology models. 相似文献
3.
Alexey V. Shvetsov Dmitry V. Lebedev Daria B. Chervyakova Irina V. Bakhlanova Igor A. Yung Aurel Radulescu Aleksandr I. Kuklin Dmitry M. Baitin Vladimir V. Isaev-Ivanov 《FEBS letters》2014
Using molecular modeling techniques we have built the full atomic structure and performed molecular dynamics simulations for the complexes formed by Escherichia coli RecX protein with a single-stranded oligonucleotide and with RecA presynaptic filament. Based on the modeling and SANS experimental data a sandwich-like filament structure formed two chains of RecX monomers bound to the opposite sides of the single stranded DNA is proposed for RecX::ssDNA complex. The model for RecX::RecA::ssDNA include RecX binding into the grove of RecA::ssDNA filament that occurs mainly via Coulomb interactions between RecX and ssDNA. Formation of RecX::RecA::ssDNA filaments in solution was confirmed by SANS measurements which were in agreement with the spectra computed from the molecular dynamics simulations. 相似文献
4.
The results of full-atom molecular dynamics simulations of the transmembrane domains (TMDs) of both native, and Glu664-mutant (either protonated or unprotonated) Neu in an explicit fully hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayer are presented. For the native TMD peptide, a 10.05 ns trajectory was collected, while for the mutant TMD peptides 5.05 ns trajectories were collected for each. The peptides in all three simulations display stable predominantly -helical hydrogen bonding throughout the trajectories. The only significant exception occurs near the C-terminal end of the native and unprotonated mutant TMDs just outside the level of the lipid headgroups, where -helical hydrogen bonding develops, introducing a kink in the backbone structure. However, there is no indication of the formation of a bulge within the hydrophobic region of either native or mutant peptides. Over the course of the simulation of the mutant peptide, it is found that a significant number of water molecules penetrate the hydrophobic region of the surrounding lipid molecules, effectively hydrating Glu664. If the energy cost of such water penetration is significant enough, this may be a factor in the enhanced dimerization affinity of Glu664-mutant Neu. 相似文献
5.
Heparin is a key player in cell signaling via its physical interactions with protein targets in the extracellular matrix. However, basic molecular level understanding of these highly biologically relevant intermolecular interactions is still incomplete. In this study, for the first time, microsecond-scale MD simulations are reported for a complex between fibroblast growth factor 1 and heparin. We rigorously analyze this molecular system in terms of the conformational space, structural, energetic, and dynamic characteristics. We reveal that the conformational selection mechanism of binding denotes a recognition specificity determinant. We conclude that the length of the simulation could be crucial for evaluation of some of the analyzed parameters. Our data provide novel significant insights into the interactions in the fibroblast growth factor 1 complex with heparin, in particular, and into the physical-chemical nature of protein-glycosaminoglycan systems in general, which have potential applicability for biomaterials development in the area of regenerative medicine. 相似文献
6.
Hanbin Liu Jose Henrique Pereira Paul D. Adams Rajat Sapra Blake A. Simmons Kenneth L. Sale 《FEBS letters》2010,584(15):3431-3435
Cel9A from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius belongs to the subfamily E1 of family 9 glycoside hydrolases, many members of which have an N-terminal Ig-like domain followed by the catalytic domain. The Ig-like domain is not directly involved in either carbohydrate binding or biocatalysis; however, deletion of the Ig-domain promotes loss of enzymatic activity. We have investigated the functional role of the Ig-like domain using molecular dynamics simulations. Our simulations indicate that residues within the Ig-like domain are dynamically correlated with residues in the carbohydrate-binding pocket and with key catalytic residues of Cel9A. Free energy perturbation simulations indicate that the Ig-like domain stabilizes the catalytic domain and may be responsible for the enhanced thermostability of Cel9A. 相似文献
7.
Oleksandr V. Savytskyi Semen O. Yesylevskyy Alexander I. Kornelyuk 《Journal of molecular recognition : JMR》2013,26(2):113-120
Human tyrosyl‐tRNA synthetase (HsTyrRS) is composed of two structural modules: N‐terminal catalytic core and an EMAP II‐like C‐terminal domain. The structures of these modules are known, but no crystal structure of the full‐length HsTyrRS is currently available. An all‐atom model of the full‐length HsTyrRS was developed in this work. The structure, dynamics, and domain binding interfaces of HsTyrRS were investigated by extensive molecular dynamics (MD) simulations. Our data suggest that HsTyrRS in solution consists of a number of compact asymmetric conformations, which differ significantly by their rigidity, internal mobility, orientation of C‐terminal modules, and the strength of interdomain binding. Interfaces of domain binding obtained in MD simulations are in perfect agreement with our previous coarse‐grained hierarchical rotations technique simulations. Formation of the hydrogen bonds between R93 residue of the ELR cytokine motif and the residues A340 and E479 in the C‐module was observed. This observation supports the idea that the lack of cytokine activity in the full‐length HsTyrRS is explained by interactions between N‐modules and C‐modules, which block the ELR motif. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
Membrane proteins control the traffic across cell membranes and thereby play an essential role in cell function from transport of various solutes to immune response via molecular recognition. Because it is very difficult to determine the structures of membrane proteins experimentally, computational methods have been increasingly used to study their structure and function. Here we focus on two classes of membrane proteins—ion channels and transporters—which are responsible for the generation of action potentials in nerves, muscles, and other excitable cells. We describe how computational methods have been used to construct models for these proteins and to study the transport mechanism. The main computational tool is the molecular dynamics (MD) simulation, which can be used for everything from refinement of protein structures to free energy calculations of transport processes. We illustrate with specific examples from gramicidin and potassium channels and aspartate transporters how the function of these membrane proteins can be investigated using MD simulations. 相似文献
9.
Sophie Barbe Vincent Lafaquière David Guieysse Pierre Monsan Magali Remaud‐Siméon Isabelle André 《Proteins》2009,77(3):509-523
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
10.
The entry of substrate into the active site is the first event in any enzymatic reaction. However, due to the short time interval between the encounter and the formation of the stable complex, the detailed steps are experimentally unobserved. In the present study, we report a molecular dynamics simulation of the encounter between palmitate molecule and the Toad Liver fatty acid binding protein, ending with the formation of a stable complex resemblance in structure of other proteins of this family. The forces operating on the system leading to the formation of the tight complex are discussed. 相似文献
11.
Alternating and diblock polyampholytes confined in a slit with and without an electric field have been simulated by the molecular dynamics method with a Langevin thermostat. It is shown that the slit has a strong effect on the properties of the polyampholyte. The effect is stronger when the electric field is weak, or the temperature is not too high. When a polyampholyte chain moves close to the slit wall, its radius of gyration perpendicular to the wall becomes smaller but that parallel to the wall becomes larger. Owing to the confinement of the slit, the polyampholyte chain closer to the slit wall tends to lie on the wall and becomes more flat. The width of the slit has only a little influence on the properties of solutions near the slit wall, values of several physical statistics are very close with different widths. However, when the electric field strength is strong enough in a narrow slit, the obtained properties obviously differ. 相似文献
12.
Molecular dynamics simulations of ion distribution in a nanochannel were performed using a three region simulation domain including two bulk regions on each side of the nanochannel. This scheme allows the study of ion concentration and distribution inside the nanochannel under a given bulk electrolyte concentration, i.e. when the molecular system reaches equilibrium, the concentrations of the counter- and co-ions inside the nanochannel corresponding to a bulk electrolyte will emerge naturally. Our approach is in sharp contrast to the common practice in modeling electric double layers where the number of ions in the nanochannel is assigned somewhat arbitrarily, corresponding to an unknown bulk concentration. 相似文献
13.
The structures of fully active cyclin-dependent kinase-2 (CDK2) complexed with ATP and peptide substrate, CDK2 after the catalytic
reaction, and CDK2 inhibited by phosphorylation at Thr14/Tyr15 were studied using molecular dynamics (MD) simulations. The
structural details of the CDK2 catalytic site and CDK2 substrate binding box were described. Comparison of MD simulations
of inhibited complexes of CDK2 was used to help understand the role of inhibitory phosphorylation at Thr14/Tyr15. Phosphorylation
at Thr14/Tyr15 causes ATP misalignment for the phosphate-group transfer, changes in the Mg2+ coordination sphere, and changes in the H-bond network formed by CDK2 catalytic residues (Asp127, Lys129, Asn132). The inhibitory
phosphorylation causes the G-loop to shift from the ATP binding site, which leads to opening of the CDK2 substrate binding
box, thus probably weakening substrate binding. All these effects explain the decrease in kinase activity observed after inhibitory
phosphorylation at Thr14/Tyr15 in the G-loop. Interaction of the peptide substrate, and the phosphorylated peptide product,
with CDK2 was also studied and compared. These results broaden hypotheses drawn from our previous MD studies as to why a basic
residue (Arg/Lys) is preferred at the P+2 substrate position.
Figure View of the substrate binding site of the fully active cyclin-dependent kinase-2 (CDK2) (pT160-CDK2/cyclin A/ATP). The pThr160 activation site is located in the T-loop (yellow secondary structure). The G-loop, which partly forms the ATP binding site, is shown in blue. The Thr14 and Tyr15 inhibitory phosphorylation sites located in the G-loop are shown in licorice representation 相似文献
14.
The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (C rms deviation 1–1.3 Å). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 Å, organic solvent reduced flexibility to 0.9 Å. This increase rigidity was caused by two salt bridges (Lys85–Asp284, Lys75–Asp79) and a stable hydrogen bond (Lys75–Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile.
Figure Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicatedThis revised version was published online in October 2004 with corrections to the Graphical Abstract. 相似文献
15.
Zaheer Ul-Haq Sajda Ashraf Majdi M. Bkhaitan 《Journal of biomolecular structure & dynamics》2019,37(5):1120-1135
Casein kinase-II, a member of protein kinase family, plays significant role in different cellular processes such as cell growth, differentiation, proliferation, gene expression, and embryogenesis. Being a potent suppressor of apoptosis, it serves as a significant link for its association with various types of malignancies such as colorectal and breast cancer. To overcome its pathological role in various cancerous diseases, CK-II procures great consideration as a therapeutic target. This study aimed at understanding the binding mechanism and structural properties of benzimidazole derivatives by utilizing various computational tools including docking simulation, three-dimensional quantitative structure activity relationships and molecular dynamic simulation. Structure-based 3D-QSAR techniques such as CoMFA and CoMSIA models, were established from the conformations gained by protein–ligand docking approach. The attained models have showed a good extrapolative power for internal as well as external validation. Moreover, MD simulation was carried out to explain the detailed binding mechanism and the comparison of inhibitor’s binding mode with diverse biological activities. A good correlation was observed among docking studies, MD results, and contour map analysis. Interestingly new molecules were designed using detail structural information from MD simulation, showed higher potency of inhibition (pIC50 7.6–7.7) compare to the most active compound of the series. 相似文献
16.
17.
Molecular dynamics simulations reveal structural insights into inhibitor binding modes and functionality in human Group IIA phospholipase A2 下载免费PDF全文
Ryung Rae Kim Alpeshkumar K. Malde Alireza Nematollahi Kieran F. Scott W. Bret Church 《Proteins》2017,85(5):827-842
Human Group IIA phospholipase A2 (hGIIA) promotes inflammation in immune‐mediated pathologies by regulating the arachidonic acid pathway through both catalysis‐dependent and ‐independent mechanisms. The hGIIA crystal structure, both alone and inhibitor‐bound, together with structures of closely related snake‐venom‐derived secreted phospholipase enzymes has been well described. However, differentiation of biological and nonbiological contacts and the relevance of structures determined from snake venom enzymes to human enzymes are not clear. We employed molecular dynamics (MD) and docking approaches to understand the binding of inhibitors that selectively or nonselectively block the catalysis‐independent mechanism of hGIIA. Our results indicate that hGIIA behaves as a monomer in the solution environment rather than a dimer arrangement that is in the asymmetric unit of some crystal structures. The binding mode of a nonselective inhibitor, KH064, was validated by a combination of the experimental electron density and MD simulations. The binding mode of the selective pentapeptide inhibitor FLSYK to hGIIA was stipulated to be different to that of the snake venom phospholipases A2 of Daboia russelli pulchella (svPLA2). Our data suggest that the application of MD approaches to crystal structure data is beneficial in evaluating the robustness of conclusions drawn based on crystal structure data alone. Proteins 2017; 85:827–842. © 2016 Wiley Periodicals, Inc. 相似文献
18.
Molecular dynamics simulations of Helium (He), Neon (Ne), Argon (Ar), Krpton (Kr) and Xenon (Xe) encapsulated in C60 are discussed, as well simulations of Fullerenes containing anywhere from two to four He atoms. Even for single atom encapsulates, no species resides at the geometric center of the Fullerene cage. Smaller atoms sit more off-center than larger ones, and He appears to be a special case in both centering and dynamics. Some encapsulated species stabilize the cage by stifling radial fluctuations and others disrupt it; adding Ne seems to have the most stabilizing effect, while Kr and Xe cause the largest radial atomic excursions. Multiple He encapsulates tend to stabilize the cage; such systems are very stressed and show structure over a wide temperature range. Based on dynamical information quadruple He seems to be close to the packing limit for C60. 相似文献
19.
Loop-gating is one of two voltage-dependent mechanisms that regulate the open probability of connexin channels. The loop-gate permeability barrier is formed by a segment of the first extracellular loop (E1) (the parahelix) and appears to be accompanied by straightening of the bend angle between E1 and the first transmembrane domain (TM1). Here, all-atom molecular dynamics simulations are used to identify and characterize interacting van der Waals and electrostatic networks that stabilize the parahelices and TM1/E1 bend angles of the open Cx26 hemichannel. Dynamic fluctuations in an electrostatic network in each subunit are directly linked to the stability of parahelix structure and TM1/E1 bend angle in adjacent subunits. The electrostatic network includes charged residues that are pore-lining and thus positioned to be voltage sensors. We propose that the transition to the closed state is initiated by voltage-driven disruption of the networks that stabilize the open-state parahelix configuration, allowing the parahelix to protrude into the channel pore to form the loop-gate barrier. Straightening of the TM1/E1 bend appears to be a consequence of the reorganization of the interacting networks that accompany the conformational change of the parahelix. The electrostatic network extends across subunit boundaries, suggesting a concerted gating mechanism. 相似文献
20.
Syma Khalid 《生物化学与生物物理学报:生物膜》2008,1778(9):1871-1880
Outer membrane proteins (OMPs) of Gram-negative bacteria have a variety of functions including passive transport, active transport, catalysis, pathogenesis and signal transduction. Whilst the structures of ∼ 25 OMPs are currently known, there is relatively little known about their dynamics in different environments. The outer membrane protein, OmpA from Escherichia coli has been studied extensively in different environments both experimentally and computationally, and thus provides an ideal test case for the study of the dynamics and environmental interactions of outer membrane proteins. We review molecular dynamics simulations of OmpA and its homologues in a variety of different environments and discuss possible mechanisms of pore gating. The transmembrane domain of E. coli OmpA shows subtle differences in dynamics and interactions between a detergent micelle and a lipid bilayer environment. Simulations of the crystallographic unit cell reveal a micelle-like network of detergent molecules interacting with the protein monomers. Simulation and modelling studies emphasise the role of an electrostatic-switch mechanism in the pore-gating mechanism. Simulation studies have been extended to comparative models of OmpA homologues from Pseudomonas aeruginosa (OprF) and Pasteurella multocida (PmOmpA), the latter model including the periplasmic C-terminal domain. 相似文献