首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sato S  Inoue H  Kogure T  Tagaya M  Tani K 《FEBS letters》2010,584(21):4389-4395
Mammals have three members of the intracellular phospholipase A1 protein family (phosphatidic acid preferring-phospholipase A1, p125, and KIAA0725p). In this study, we showed that KIAA0725p is localized in the Golgi, and is rapidly cycled between the Golgi and cytosol. Catalytic activity is important for targeting of KIAA0725p to Golgi membranes. RNA interference experiments suggested that KIAA0725p contributes to efficient membrane trafficking from the Golgi apparatus to the plasma membrane, but is not involved in brefeldin A-induced Golgi-to-endoplasmic reticulum retrograde transport.

Structured summary

MINT-8019765: KIAA0725 (uniprotkb:O94830) and Beta-COP (uniprotkb:P53618) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-8019775: KIAA0725 (uniprotkb:O94830) and GM130 (uniprotkb:Q5PXD5) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

2.
Manganese superoxide dismutase (MnSOD) is vital to the protection of mitochondria and cells against oxidative stress. Earlier, we demonstrated that catalytically active homo-tetramer of MnSOD can be stabilized by oxidative cross-linking. Here we report that this effect may be translated into increased radioresistance of mouse embryonic cells (MECs) by pre-exposure to oxidative stress. Pre-treatment of MECs with antimycin A, rotenone or H2O2 increased their survival after irradiation. Using MnSOD siRNA, we show that MECs with decreased MnSOD levels displayed a lowered ability to preconditioning. Thus oxidative preconditioning may be used for targeted regulation of MnSOD.

Structured summary

MINT-7288408: MnSOD (uniprotkb:P04179) and MnSOD (uniprotkb:P04179) physically interact (MI:0915) by zymography (MI:0512)  相似文献   

3.
Oligomerization of G protein-coupled receptors (GPCRs) is known to play important roles in regulating receptor pharmacology and function. Whereas many bivalent GPCR interactions have been described, the stoichiometry and localization of GPCR oligomers are largely unknown. We have used bimolecular fluorescence complementation (BiFC) to study adenosine A2A receptor (A2AR) oligomerization. The data suggest specificity of the A2AR/A2AR interaction monitored by BiFC and proper sub-cellular localization of tagged receptors. Moreover, using a novel approach combining fluorescence resonance energy transfer and BiFC, we found that at least three A2A receptors assemble into higher-order oligomers at the plasma membrane in Cath.A differentiated neuronal cells.

Structured summary

MINT-6797156, MINT-6797142: A2AR (uniprotkb:P29274) physically interacts (MI:0218) with A2AR (uniprotkb:P29274) by bimolecular fluorescence complementation (MI:0809)
MINT-6797129: A2AR (uniprotkb:P29274) physically interacts (MI:0218) with A2AR (uniprotkb:P29274) by fluorescent resonance energy transfer (MI:0055)
  相似文献   

4.
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

Structured summary

MINT-7905256: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A6 (uniprotkb:P06703) by surface plasmon resonance (MI:0107)MINT-7905063: MDM2 (uniprotkb:Q00987) and s100A1 (uniprotkb:P23297) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905376: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) physically interact (MI:0915) by competition binding (MI:0405)MINT-7905130: s100A6 (uniprotkb:P06703) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905207: s100A6 (uniprotkb:P06703) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905043: s100B (uniprotkb:P04271) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905196: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905358: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) physically interact (MI:0915) by fluorescence polarization spectroscopy (MI:0053)MINT-7905220: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100B (uniprotkb:P04271) by surface plasmon resonance (MI:0107)MINT-7905104: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905229: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A1 (uniprotkb:P23297) by surface plasmon resonance (MI:0107)MINT-7905317, MINT-7905162: s100B (uniprotkb:P04271) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905238: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A2 (uniprotkb:P29034) by surface plasmon resonance (MI:0107)MINT-7905174, MINT-7905308: s100A1 (uniprotkb:P23297) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905247: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A4 (uniprotkb:P26447) by surface plasmon resonance (MI:0107)MINT-7905090: s100A2 (uniprotkb:P29034) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905142, MINT-7905326: MDM2 (uniprotkb:Q00987) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905185, MINT-7905347: s100A2 (uniprotkb:P29034) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)  相似文献   

5.
We show that importin β3 is essential for the nuclear import of L7. The import is mediated via the multifaceted basic amino acid clusters present in the NH2-region of L7, and is RanGTP-dependent. Using a (EGFP)3 reporter system and a FRAP assay, the role the individual clusters play as a functional NLS has been characterized, and each cluster was found to exhibit a different rate of real time nuclear uptake. We assume that having such a multiple NLS may provide L7 with preferential nuclear uptake.

Structured summary

MINT-7992735: Importin beta-3 (uniprotkb:O00410) binds (MI:0407) to L7 (uniprotkb:P18124) by biophysical (MI:0013)MINT-7992687: L7 (uniprotkb:P18124) binds (MI:0407) to Importin beta-3 (uniprotkb:O00410) by filter binding (MI:0049)MINT-7992699: L7 (uniprotkb:P18124) physically interacts (MI:0915) with Importin beta-3 (uniprotkb:O00410) by affinity chromatography technology (MI:0004)MINT-7992718: L7 (uniprotkb:P18124) physically interacts (MI:0915) with RAN (uniprotkb:P62826) by competition binding (MI:0405)MINT-7992671: L7 (uniprotkb:P18124) physically interacts (MI:0915) with Importin beta-3 (uniprotkb:O00410) by pull down (MI:0096)  相似文献   

6.
The presence of heterotrimeric G-proteins at epithelial tight junctions suggests that these cellular junctions are regulated by so far unknown G-protein coupled receptors. We identify here an interaction between the human somatostatin receptor 3 (hSSTR3) and the multiple PDZ protein MUPP1. MUPP1 is a tight junction scaffold protein in epithelial cells, and as a result of the interaction with MUPP1 the hSSTR3 is targeted to tight junctions. Interaction with MUPP1 enables the receptor to regulate transepithelial permeability in a pertussis toxin sensitive manner, suggesting that hSSTR3 can activate G-proteins locally at tight junctions.

Structured summary:

MINT-6800756, MINT-6800770: MUPP1 (uniprotkb:O75970) and hSSTR3 (uniprotkb:P32745) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-6800587:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O55164) by pull down (MI:0096)MINT-6800562:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O75970) by two hybrid (MI:0018)MINT-6800622:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with PIST (uniprotkb: Q9HD26), Hsp70 (uniprotkb:P08107), Maguk p55 (uniprotkb: Q8N3R9), MAGI3 (uniprotkb:Q5TCQ9), ZO-2 (uniprotkb:Q9UDY2), ZO-1 (uniprotkb:Q07157) and MUPP1 (uniprotkb:O55164) by pull down (MI:0096)MINT-6800607, MINT-6801122:hSSTR3 (uniprotkb:P32745) physically interacts (MI:0218) with MUPP1 (uniprotkb:O75970) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

7.
In every synapse, a large number of proteins interact with other proteins in order to carry out signaling and transmission in the central nervous system. In this study, we used interaction proteomics to identify novel synaptic protein interactions in mouse cortical membranes under native conditions. Using immunoprecipitation, immunoblotting, and mass spectrometry, we identified a number of novel synaptic protein interactions involving soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), calcium-activated potassium channel (BKCa) alpha subunits, and dynamin-1. These novel interactions offer valuable insight into the protein-protein interaction network in intact synapses that could advance understanding of vesicle trafficking, release, and recycling.

Structured summary

MINT-7543319: Snap-25 (uniprotkb:P60879) physically interacts (MI:0914) with Tubulin beta-5 chain (uniprotkb:P99024), V-type proton ATPase subunit d 1 (uniprotkb:P51863), Zinc finger homeobox protein 3 (uniprotkb:Q61329), Tubulin beta-2A chain (uniprotkb:Q7TMM9), Synaptophysin (uniprotkb:Q62277), Gapdh (uniprotkb:P16858), Basement membrane-specific heparan sulfate proteoglycan core protein (uniprotkb:Q05793), Tubulin alpha-4A chain (uniprotkb:P68368), Tubulin alpha-1A chain (uniprotkb:P68369), Microtubule-associated protein 6 (uniprotkb:Q7TSJ2), AP-2 complex subunit beta (uniprotkb:Q9DBG3), Phosphofurin acidic cluster sorting protein 1 (uniprotkb:Q8K212), AP-2 complex subunit alpha-1 (uniprotkb:P17426), Kinesin-1 heavy chain (uniprotkb:Q617r68), Kinesin heavy chain isoform 5C (uniprotkb:P28738), Sodium/potassium-transporting ATPase subunit alpha-1 (uniprotkb:Q8VDN2) and Nck-associated protein 1 (uniprotkb:P28660) by anti bait co-immunoprecipitation (MI:0006)MINT-7543636: Calcium-activated potassium channel subunit alpha-1 (uniprotkb:Q08460) physically interacts (MI:0914) with AMP deaminase 2 (uniprotkb:Q9DBT5), Gamma-tubulin complex component 4 (uniprotkb:Q9D4F8), Gamma-tubulin complex component 2 (uniprotkb:Q921G8), Sodium/potassium-transporting ATPase subunit alpha-1 (uniprotkb:Q8VDN2), Phosphoinositide 3-kinase regulatory subunit 4 (uniprotkb:Q8VD65), Beta-centractin (uniprotkb:Q8R5C5), KIAA1107 (uniprotkb:Q80TK0), Sodium/potassium-transporting ATPase subunit alpha-2 (uniprotkb:Q6PIE5), Sodium/potassium-transporting ATPase subunit alpha-3 (uniprotkb:Q6PIC6), Phosphatidylinositol 3-kinase catalytic subunit type 3 (uniprotkb:Q6PF93), KH domain-containing, RNA-binding, signal transduction-associated protein 1 (uniprotkb:Q60749), Tubulin gamma-1 chain (uniprotkb:P83887), Heat shock cognate 71 kDa protein (uniprotkb:P63017), Alpha-centractin (uniprotkb:P61164), Gamma-tubulin complex component 3 (uniprotkb:P58854), Dynamin-1 (uniprotkb:P39053), Kinesin heavy chain isoform 5C (uniprotkb:P28738), Elongation factor 1-alpha 1 (uniprotkb:P10126), Kinesin light chain 2 (uniprotkb:O88448), Activated CDC42 kinase 1 (uniprotkb:O54967) and Syntaxin-binding protein 1 (uniprotkb:O08599) by anti bait co-immunoprecipitation (MI:0006)MINT-7544031: Calcium-activated potassium channel subunit alpha-1 (uniprotkb:Q08460) physically interacts (MI:0914) with Syntaxin-binding protein 1 (uniprotkb:O08599), Syntaxin-1A (uniprotkb:O35526) and Dynamin-1 (uniprotkb:P39053) by anti bait co-immunoprecipitation (MI:0006)MINT-7543287: Syntaxin-1A (uniprotkb:O35526) physically interacts (MI:0914) with Vamp2 (uniprotkb:P63044), Snap-25 (uniprotkb:P60879), munc-18 (uniprotkb:O08599) and BKCa alpha subunit (uniprotkb:Q08460) by anti bait co-immunoprecipitation (MI:0006)MINT-7543972: Vamp-2 (uniprotkb:P63044) physically interacts (MI:0914) with Dynamin-1 (uniprotkb:P39053), Snap-25 (uniprotkb:P60879), Syntaxin-1A (uniprotkb:O35526) and Synaptophysin (uniprotkb:Q62277) by anti bait co-immunoprecipitation (MI:0006)MINT-7543728: Dynamin-1 (uniprotkb:P39053) physically interacts (MI:0914) with Clathrin heavy chain 1 (uniprotkb:Q68FD5) and Calcium-activated potassium channel subunit alpha-1 (uniprotkb:Q08460) by anti bait co-immunoprecipitation (MI:0006)MINT-7543905: Snap-25 (uniprotkb:P60879) physically interacts (MI:0914) with Syntaxin-1A (uniprotkb:O35526) and Vamp-2 (uniprotkb:P63044) by anti bait co-immunoprecipitation (MI:0006)MINT-7543476: Vamp-2 (uniprotkb:P63044) physically interacts (MI:0914) with Syntaxin-7 (uniprotkb:O70439), Neuronal membrane glycoprotein M6-a (uniprotkb:P35802), Syntaxin-1B (uniprotkb:P61264), Beta-soluble NSF attachment protein (uniprotkb:P28663), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3 (uniprotkb:Q61011), Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 (uniprotkb:P62874), Guanine nucleotide-binding protein G(o) subunit alpha (uniprotkb:P18872), V-type proton ATPase subunit d 1 (uniprotkb:P51863), Zinc transporter 3 (uniprotkb:P97441), Sodium/potassium-transporting ATPase subunit alpha-2 (uniprotkb:Q6PIE5), Sodium/potassium-transporting ATPase subunit alpha-3 (uniprotkb:Q6PIC6), Sodium/potassium-transporting ATPase subunit alpha-1 (uniprotkb:Q8VDN2), Potassium-transporting ATPase alpha chain 1 (uniprotkb:Q64436), Synaptophysin (uniprotkb:Q62277), Syntaxin-1A (uniprotkb:O35526) and Dynamin-1 (uniprotkb:P39053) by anti bait co-immunoprecipitation (MI:0006)  相似文献   

8.
Calmodulin-regulated protein phosphorylation plays a pivotal role in amplifying and diversifying the action of calcium ion. In this study, we identified a calmodulin-binding receptor-like protein kinase (CBRLK1) that was classified into an S-locus RLK family. The plasma membrane localization was determined by the localization of CBRLK1 tagged with a green fluorescence protein. Calmodulin bound specifically to a Ca2+-dependent calmodulin binding domain in the C-terminus of CBRLK1. The bacterially expressed CBRLK1 kinase domain could autophosphorylate and phosphorylates general kinase substrates, such as myelin basic proteins. The autophosphorylation sites of CBRLK1 were identified by mass spectrometric analysis of phosphopeptides.

Structured summary

MINT-6800947:CBRLK1 (uniprotkb:Q9ZT06) and AtCaM2 (uniprotkb:P25069) bind (MI:0407) by electrophoretic mobility shift assay (MI:0413)MINT-6800966:AtCaM2 (uniprotkb:P25069) and CBRLK1 (uniprotkb:Q9ZT06) bind (MI:0407) by competition binding (MI:0405)MINT-6800930:CBRLK1 (uniprotkb:Q9ZT06) binds (MI:0407) to AtCaM2 (uniprotkb:P25069) by far Western blotting (MI:0047)MINT-6800978:AtCaM2 (uniprotkb:P25069) physically interacts (MI:0218) with CBRLK1 (uniprotkb:Q9ZT06) by cytoplasmic complementation assay (MI:0228)  相似文献   

9.
RanGTP mediates nuclear import and mitotic spindle assembly by dissociating import receptors from nuclear localization signal (NLS) bearing proteins. We investigated the interplay between import receptors and the transmembrane nucleoporin Pom121. We found that Pom121 interacts with importin α/β and a group of nucleoporins in an NLS-dependent manner. In vivo, replacement of Pom121 with an NLS mutant version resulted in defective nuclear transport, induction of aberrant cytoplasmic membrane stacks and decreased cell viability. We propose that the NLS sites of Pom121 affect its function in NPC assembly both by influencing nucleoporin interactions and pore membrane structure.

Structured summary

MINT-7951230: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:O75694), Nup133 (uniprotkb:Q8WUM0) and Importin beta (uniprotkb:Q14974) by pull down (MI:0096)MINT-7951210: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0915) with Importin alpha (uniprotkb:P52170) and Importin beta (uniprotkb:P52297) by pull down (MI:0096)MINT-7951183: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:Q7ZWL0), nup160 (uniprotkb:P83722), nup205 (uniprotkb:Q642R6), nup93 (uniprotkb:Q7ZX96), Importin beta (uniprotkb:P52297) and nup62 (uniprotkb:Q91349) by pull down (MI:0096)MINT-7951416: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:Q7ZWL0), nup93 (uniprotkb:Q7ZX96) and Importin beta (uniprotkb:P52297) by pull down (MI:0096)MINT-7951276: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:Q7ZWL0), nup205 (uniprotkb:Q642R6), nup93 (uniprotkb:Q7ZX96), Importin beta (uniprotkb:P52297) and nup62 (uniprotkb:Q91349) by pull down (MI:0096)MINT-7951306, MINT-7951362: pom121 (uniprotkb:Q5EWX9) physically interacts (MI:0914) with nup155 (uniprotkb:Q7ZWL0), nup160 (uniprotkb:P83722), nup93 (uniprotkb:Q7ZX96), Importin beta (uniprotkb:P52297) and nup62 (uniprotkb:Q91349) by pull down (MI:0096)  相似文献   

10.
Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin’s effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues.

Structured summary

MINT-7714817: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRb (uniprotkb:P48357-1) by anti tag co-immunoprecipitation (MI:0007)MINT-7714785: LEPRc (uniprotkb:P48357-2) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by bioluminescence resonance energy transfer (MI:0012)MINT-7714951, MINT-7714744: LEPRa (uniprotkb:P48357-3) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by bioluminescence resonance energy transfer (MI:0012)MINT-7714859: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by anti tag co-immunoprecipitation (MI:0007)MINT-7714885, MINT-7714672: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRb (uniprotkb:P48357-1) by bioluminescence resonance energy transfer (MI:0012)MINT-7714835: LEPRa (uniprotkb:P48357-3) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by anti tag co-immunoprecipitation (MI:0007)MINT-7714914, MINT-7714723, MINT-7714759: LeprB (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by bioluminescence resonance energy transfer (MI:0012)MINT-7714703, MINT-7714936, MINT-7714772: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by bioluminescence resonance energy transfer (MI:0012)MINT-7714872: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

11.
Although CaV1.2 and CaV1.3 are two subtypes of L-type Ca2+ channels expressed in the CNS, functions of CaV1.3 have not been well elucidated compared to CaV1.2. Here, we found that CaV1.3-NT associates with GABABR2-CT using yeast two-hybrid, GST pull-down and co-immunoprecipitation assays. We also demonstrated co-localization of CaV1.3 and GABABR2 in HEK293 cells and cultured hippocampal neurons. Whole-cell patch-clamp and Ca2+-imaging experiments revealed that activation of GABABR increases CaV1.3 currents and intracellular Ca2+ via CaV1.3, but not CaV1.2. These results show a physical and functional interaction between CaV1.3 and GABABR, suggesting the potential pivotal roles of CaV1.3 in the CNS.

Structured summary

MINT-7975667: Cav1.3 (uniprotkb:P27732) physically interacts (MI:0915) with GABABR2 (uniprotkb:O88871) by two hybrid (MI:0018)MINT-7975740: Cav1.3 (uniprotkb:P27732) and GABABR2 (uniprotkb:O75899) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7966007, MINT-7966016: Cav1.3 (uniprotkb:P27732) physically interacts (MI:0915) with GABABR2 (uniprotkb:O88871) by anti bait coimmunoprecipitation (MI:0006)MINT-7975712, MINT-7975691: Cav1.3 (uniprotkb:P27732) physically interacts (MI:0915) with GABABR2 (uniprotkb:O88871) by pull down (MI:0096)MINT-7966026: GABABR2 (uniprotkb:O88871) and Cav1.3 (uniprotkb:P27732) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

12.
It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the findings were confirmed in planta by bimolecular fluorescence complementation (BiFC) assay. Results indicated that although all CESA proteins can interact with each other, only CESA4 is able to form homodimers. A model is proposed for the secondary rosette structure. The RING-motif proved not to be essential for the interaction between the CESA proteins.

Structured summary

MINT-6951243: PIP2-1 (uniprotkb:P43286) physically interacts (MI:0218) with PIP2-1 (uniprotkb:P43286) by bimolecular fluorescence complementation (MI:0809)MINT-6950816: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) withCESA4 (uniprotkb:Q84JA6) by membrane bound complementation assay (MI:0230)MINT-6951056, MINT-6951071, MINT-6951088, MINT-6951103: CESA7 (uniprotkb:Q9SWW6) physically interacts (MI:0218) with CESA4 (uniprotkb:Q84JA6) by bimolecular fluorescence complementation (MI:0809)MINT-6950949, MINT-6950990: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA8 (uniprotkb:Q8LPK5) by membrane bound complementation assay (MI:0230)MINT-6950909, MINT-6951030: CESA4 (uniprotkb:Q8LPK5) physically interacts (MI:0218) with CESA7 (uniprotkb:Q9SWW6) by membrane bound complementation assay (MI:0230)MINT-6951042: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA4 (uniprotkb:Q84JA6) by bimolecular fluorescence complementation (MI:0809)MINT-6951004, MINT-6951016: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) with CESA7 (uniprotkb:Q9SWW6) by membrane bound complementation assay (MI:0230)MINT-6951217, MINT-6951230: CESA4 (uniprotkb:Q84JA6) physically interacts (MI:0218) with CESA8 (uniprotkb:Q8LPK5) by bimolecular fluorescence complementation (MI:0809)MINT-6951120, MINT-6951140, MINT-6951156, MINT-6951170, MINT-6951185: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) withCESA7 (uniprotkb:Q9SWW6) by bimolecular fluorescence complementation (MI:0809)MINT-6951199: CESA8 (uniprotkb:Q8LPK5) physically interacts (MI:0218) withCESA8 (uniprotkb:Q8LPK5) by bimolecular fluorescence complementation (MI:0809)  相似文献   

13.
Although the precise intracellular roles of S100 proteins are not fully understood, these proteins are thought to be involved in Ca2+-dependent diverse signal transduction pathways. In this report, we identified importin α as a novel target of S100A6. Importin α contains armadillo repeats, essential for binding to nuclear localization signals. Based on the results from GST pull-down assay, gel-shift assay, and co-immunoprecipitation, we demonstrated that S100A6 specifically interacts with the armadillo repeats of importin α in a Ca2+-dependent manner, resulting in inhibition of the nuclear localization signal (NLS)-importin α complex formation in vitro and in vivo. These results indicate S100A6 may regulate the nuclear transport of NLS-cargos in response to increasing concentrations of intracellular Ca2+.

Structured summary

MINT-8045244: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8044928: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044941: Importin alpha (uniprotkb:P52292) and S100A6 (uniprotkb:P06703) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)MINT-8044997: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by anti bait coimmunoprecipitation (MI:0006)MINT-8045031: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8044917: Importin alpha (uniprotkb:P52292) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045257: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-8045015: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045267: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) and npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8045316: Importin beta (uniprotkb:Q14974) physically interacts (MI:0915) with importin alpha (uniprotkb:P52293) by pull down (MI:0096)MINT-8045302: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with NPM1 (uniprotkb:P06748) and S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-8045290: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with npm2 (uniprotkb:Q6GQG6) by pull down (MI:0096)MINT-8044963, MINT-8044985: Importin alpha (uniprotkb:P52292) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by anti bait coimmunoprecipitation (MI:0006)MINT-8044951: Importin alpha (uniprotkb:P52292) and S100A2 (uniprotkb:P29034) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)  相似文献   

14.
Protein deglutathionylation is mainly catalyzed by glutaredoxins (GRXs). We have analyzed the biochemical properties of four of the six different GRXs of Chlamydomonas reinhardtii. Kinetic parameters were determined for disulfide and dehydroascorbate reduction but also for deglutathionylation of artificial and protein substrates. The results indicate that GRXs exhibit striking differences in their catalytic properties, mainly linked to the class of GRX considered but also to the pKa of the N-terminal catalytic cysteine. Furthermore, glutathionylated proteins were found to exhibit distinct reactivities with GRXs. These results suggest that glutathionylation may allow a fine tuning of cell metabolism under stress conditions.

Structured summary

MINT-7761120: GRX6 (uniprotkb:A8HN52) and GRX6 (uniprotkb:A8HN52) bind (MI:0408) by comigration in non denaturing gel electrophoresis (MI:0404)MINT-7761098:GRX5 (uniprotkb:A8I7Q4) and GRX5 (uniprotkb:A8I7Q4) bind (MI:0408) by comigration in non denaturing gel electrophoresis (MI:0404)  相似文献   

15.
Smita Jha 《FEBS letters》2009,583(19):3109-5638
Large conductance Ca2+-activated K+ channels (BKCa) encoded by the Slo1 gene play a role in the physiological regulation of many cell types. Here, we show that the β1 subunit of Na+/K+-ATPase (NKβ1) interacts with the cytoplasmic COOH-terminal region of Slo1 proteins. Reduced expression of endogenous NKβ1 markedly inhibits evoked BKCa currents with no apparent effect on their gating. In addition, NKβ1 down-regulated cells show decreased density of Slo1 subunits on the cell surface.

Structured summary

MINT-7260438, MINT-7260555: Slo1 (uniprotkb:Q8AYS8) physically interacts (MI:0915) with NKbeta1 (uniprotkb:P08251) by anti bait coimmunoprecipitation (MI:0006)MINT-7260587, MINT-7260606, MINT-7260619, MINT-7260632: Slo1 (uniprotkb:Q08460) physically interacts (MI:0915) with NKbeta 1 (uniprotkb:P08251) by pull down (MI:0416)MINT-7260570: NKbeta1 (uniprotkb:P08251) and Slo1 (uniprotkb:Q8AYS8) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7260414: Slo1 (uniprotkb:Q08460) physically interacts (MI:0915) with NKbeta1 (uniprotkb:P08251) by two hybrid (MI:0018)  相似文献   

16.
The calponin homology-associated smooth muscle protein (CHASM) can modulate muscle contractility, and its biological action may involve an interaction with the contractile filament. In this study, we demonstrate an interaction between CHASM and tropomyosin. Deletion constructs of CHASM were generated, and pull-down assays revealed a minimal deletion construct that could bind tropomyosin. Removal of the calponin homology (CH) domain or expression of the CH domain alone did not enable binding. The interaction was characterized by microcalorimetry with a dissociation constant of 2.0 × 10−6 M. Confocal fluorescence microscopy also showed green fluorescent protein (GFP)-CHASM localization to filamentous structures within smooth muscle cells, and this targeting was dependent upon the CH domain.

Structured summary

MINT-7966126: CHASM (uniprotkb:Q99LM3), Tropomyosin alpha (uniprotkb:P04268) and Tropomyosin beta (uniprotkb:P19352) physically interact (MI:0915) by isothermal titration calorimetry (MI:0065)MINT-7966073: CHASM (uniprotkb:Q99LM3) physically interacts (MI:0914) with Tropomyosin beta (uniprotkb:P58776) and Tropomyosin alpha (uniprotkb:P58772) by pull down (MI:0096)MINT-7966187: Tropomyosin alpha (uniprotkb:P04268) and Tropomyosin beta (uniprotkb:P19352) physically interact (MI:0915) with CHASM (uniprotkb:Q99LM3) by pull down (MI:0096)MINT-7966090: CHASM (uniprotkb:Q99LM3) binds (MI:0407) to Tropomyosin alpha (uniprotkb:P04268) by pull down (MI:0096)  相似文献   

17.
Phototropin receptor kinases play an important role in optimising plant growth in response to blue light. Much is known regarding their photochemical reactivity, yet little progress has been made to identify downstream signalling components. Here, we isolated several interacting proteins for Arabidopsis phototropin 1 (phot1) by yeast two-hybrid screening. These include members of the NPH3/RPT2 (NRL) protein family, proteins associated with vesicle trafficking, and the 14-3-3 lambda (λ) isoform from Arabidopsis. 14-3-3λ and phot1 were found to colocalise and interact in vivo. Moreover, 14-3-3 binding to phot1 was limited to non-epsilon 14-3-3 isoforms and was dependent on key sites of receptor autophosphorylation. No 14-3-3 binding was detected for Arabidopsis phot2, suggesting that 14-3-3 proteins are specific to phot1 signalling.

Structured summary

MINT-7146953: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF7 (uniprotkb:Q9LFJ7) by two hybrid (MI:0018)MINT-7147335: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 phi (uniprotkb:P46077) by far Western blotting (MI:0047)MINT-7146854: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with RPT2 (uniprotkb:Q682S0) by two hybrid (MI:0018)MINT-7147215: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by anti tag coimmunoprecipitation (MI:0007)MINT-7147044, MINT-7147185, MINT-7147200, MINT-7147413: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by far Western blotting (MI:0047)MINT-7146983: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with 14-3-3 lambda (uniprotkb:P48349) by two hybrid (MI:0018)MINT-7146871: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with NPH3-like (uniprotkb:Q9S9Q9) by two hybrid (MI:0018)MINT-7146905: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF2 (uniprotkb:Q9M1P5) by two hybrid (MI:0018)MINT-7147364: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 upsilon (uniprotkb:P42645) by far Western blotting (MI:0047)MINT-7147234: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 kappa (uniprotkb:P48348) by far Western blotting (MI:0047)  相似文献   

18.
Sergio P. Acebrón 《FEBS letters》2009,583(18):2991-2996
Intracellular protein aggregates formed under severe thermal stress can be reactivated by the concerted action of the Hsp70 system and Hsp100 chaperones. We analyzed here the interaction of DnaJ/DnaK and ClpB with protein aggregates. We show that aggregate properties modulate chaperone binding, which in turn determines aggregate reactivation efficiency. ClpB binding strictly depends on previous DnaK association with the aggregate. The affinity of ClpB for the aggregate-DnaK complex is low (Kd = 5-10 μM), indicating a weak interaction. Therefore, formation of the DnaK-ClpB bichaperone network is a three step process. After initial DnaJ binding, the cochaperone drives association of DnaK to aggregates, and in the third step, as shown here, DnaK mediates ClpB interaction with the aggregate surface.

Structured summary

MINT-7258957: G6PDH (uniprotkb:P0AC53) and G6PDH (uniprotkb:P0AC53) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258951: alpha glucosidase (uniprotkb:P21517) and alpha glucosidase (uniprotkb:P21517) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258903: AdhE (uniprotkb:P0A9Q7) and AdhE (uniprotkb:P0A9Q7) bind (MI:0407) by dynamic light scattering (MI:0038)MINT-7258900: G6PDH (uniprotkb:P0AC53) and G6PDH (uniprotkb:P0AC53) bind (MI:0407) by biophysical (MI:0013)MINT-7258974: DnaK (uniprotkb:P0A6Y8), ClpB (uniprotkb:P63284), DnaJ (uniprotkb:P08622) and G6PDH (uniprotkb:P0AC53) physically interact (MI:0914) by cosedimentation (MI:0027)  相似文献   

19.
The phytocannabinoid Δ9-Tetrahydrocannabinol (Δ9-THC), the main psychoactive cannabinoid in cannabis, activates a number of signalling cascades including p53. This study examines the role of Δ9-THC in regulating the p53 post-translational modifier proteins, Murine double minute (Mdm2) and Small Ubquitin-like MOdifier protein 1 (SUMO-1) in cortical neurons. Δ9-THC increased both Mdm2 and SUMO-1 protein expression and induced the deSUMOylation of p53 in a cannabinoid receptor type 1 (CB1)-receptor dependent manner. We demonstrate that Δ9-THC decreased the SUMOylation of the CB1 receptor. The data reveal a novel role for cannabinoid receptor activation in modulating the SUMO regulatory system.

Structured summary

MINT-7266621: Cb1 (uniprotkb:P20272) physically interacts (MI:0915) with SUMO-1 (uniprotkb:Q5I0H3) by anti bait coimmunoprecipitation(MI:0006)MINT-7266633: SUMO-1 (uniprotkb:Q5I0H3) and Cb1 (uniprotkb:P20272) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7266611: p53 (uniprotkb:P10361) physically interacts (MI:0915) with SUMO-1 (uniprotkb:Q5I0H3) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

20.
The P2X7 receptor is an important regulator of epithelial cell growth. The aim of the present study was to better understand the biological significance of P2X7 receptor expression in normal and cancer human epithelial tissues. P2X7 receptor and messenger RNA (mRNA) levels were determined in human tissues containing epithelial dysplastic, pre- or early cancerous, and cancer cells, and the levels were compared to those in the corresponding normal epithelial cells within the same tissue of the same case. P2X7 receptor levels were determined by quantification of immunoreactivity specific to the functional (full-length) P2X7 receptor, and P2X7 mRNA levels were determined by real-time polymerase chain reaction. P2X7 receptor levels in cancer cells were similar (colon adenocarcinoma) or greater (thyroid papillary carcinoma) than those in the corresponding normal cells. In contrast, in cancer cells of the ectocervix (squamous), endocervix and endometrium (adenocarcinoma), urinary bladder (transitional cell carcinoma), and breast (ductal and lobular adenocarcinomas), P2X7 receptor levels were lower by about twofold than those in the corresponding normal epithelial cells. Similarly, P2X7 mRNA levels were lower in uterine, bladder, and breast cancer epithelial tissues by about fourfold than those in the corresponding normal tissues. In addition, P2X7 receptor levels were decreased already in dysplastic ectocervical cells and pre- or early cancerous endometrial and bladder cells. The data suggest that in epithelia originating from the ectoderm, the uro-genital sinus, and the distal paramesonephric duct, decreased expression of the P2X7 receptor precedes or coincides with neoplastic changes in those tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号