首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During senescence, chlorophyll (chl) is metabolized to colorless nonfluorescent chl catabolites (NCCs). A central reaction of the breakdown pathway is the ring cleavage of pheophorbide (pheide) a to a primary fluorescent chl catabolite. Two enzymes catalyze this reaction, pheide a oxygenase (PAO) and red chl catabolite reductase. Five NCCs and three fluorescent chl catabolites (FCCs) accumulated during dark-induced chl breakdown in Arabidopsis (Arabidopsis thaliana). Three of these NCCs and one FCC (primary fluorescent chl catabolite-1) were identical to known catabolites from canola (Brassica napus). The presence in Arabidopsis of two modified FCCs supports the hypothesis that modifications, as present in NCCs, occur at the level of FCC. Chl degradation in Arabidopsis correlated with the accumulation of FCCs and NCCs, as well as with an increase in PAO activity. This increase was due to an up-regulation of Pao gene expression. In contrast, red chl catabolite reductase is not regulated during leaf development and senescence. A pao1 knockout mutant was identified and analyzed. The mutant showed an age- and light-dependent cell death phenotype on leaves and in flowers caused by the accumulation of photoreactive pheide a. In the dark, pao1 exhibited a stay-green phenotype. The key role of PAO in chl breakdown is discussed.  相似文献   

2.
During leaf senescence, chlorophyll (Chl) is broken down to nonfluorescent chlorophyll catabolites (NCCs). These arise from intermediary fluorescent chlorophyll catabolites (FCCs) by an acid-catalyzed isomerization inside the vacuole. The chemical structures of NCCs from Arabidopsis (Arabidopsis thaliana) indicate the presence of an enzyme activity that demethylates the C13(2)-carboxymethyl group present at the isocyclic ring of Chl. Here, we identified this activity as methylesterase family member 16 (MES16; At4g16690). During senescence, mes16 leaves exhibited a strong ultraviolet-excitable fluorescence, which resulted from large amounts of different FCCs accumulating in the mutants. As confirmed by mass spectrometry, these FCCs had an intact carboxymethyl group, which slowed down their isomerization to respective NCCs. Like a homologous protein cloned from radish (Raphanus sativus) and named pheophorbidase, MES16 catalyzed the demethylation of pheophorbide, an early intermediate of Chl breakdown, in vitro, but MES16 also demethylated an FCC. To determine the in vivo substrate of MES16, we analyzed pheophorbide a oxygenase1 (pao1), which is deficient in pheophorbide catabolism and accumulates pheophorbide in the chloroplast, and a mes16pao1 double mutant. In the pao1 background, we additionally mistargeted MES16 to the chloroplast. Normally, MES16 localizes to the cytosol, as shown by analysis of a MES16-green fluorescent protein fusion. Analysis of the accumulating pigments in these lines revealed that pheophorbide is only accessible for demethylation when MES16 is targeted to the chloroplast. Together, these data demonstrate that MES16 is an integral component of Chl breakdown in Arabidopsis and specifically demethylates Chl catabolites at the level of FCCs in the cytosol.  相似文献   

3.
In this work, using a PAM-fluorimetry technique, we have compared effects of plant adaptation to the light or dark conditions on the kinetics of chlorophyll a fluorescence yield in Tradecantia leaves of several species (Tradescantia albiflora, Tradescantia fluminensis, Tradescantia navicularis, and Tradescantia sillamontana), which represent plants of different ecotypes. Two fluorescence parameters were used to assess photosynthetic performance in vivo: non-photochemical quenching (NPQ) of chlorophyll fluorescence (qNPQ) determined by energy losses in the light-harvesting antenna of photosystem 2 (PS2), and PS2 operating efficiency (ΦPSII). Comparative study of light-induced changes in qNPQ and ΦPSII has demonstrated that shade-tolerant Tradecantia species (T. albiflora Kunth, T. fluminensis Vell.) reveal higher capacities for NPQ and demonstrate slower transitions between the ‘light-adapted’ and ‘dark-adapted’ states than succulent species T. navicularis and T. sillamontana, which are typical habitats of semi-deserts. We analyze the photosynthetic performance of Tradescantia species in the context of their adaptabilities to variable environment conditions. The ability of shade-tolerant plants to retain a relatively long-term (∼40-60 min) ‘memory’ for illumination history may be associated with the regulatory mechanisms that provide the flexibility of photosynthetic apparatus in response to fluctuations of light intensity.  相似文献   

4.
5.
A central reaction of chlorophyll breakdown, porphyrin ring opening of pheophorbide a to the primary fluorescent chlorophyll catabolite (pFCC), requires pheophorbide a oxygenase (PAO) and red chlorophyll catabolite reductase (RCCR), with red chlorophyll catabolite (RCC) as a presumably PAO-bound intermediate. In subsequent steps, pFCC is converted to different fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs). Here, we show that RCCR-deficient Arabidopsis thaliana accumulates RCC and three RCC-like pigments during senescence, as well as FCCs and NCCs. We also show that the stereospecificity of Arabidopsis RCCR is defined by a small protein domain and can be reversed by a single Phe-to-Val exchange. Exploiting this feature, we prove the in vivo participation of RCCR in chlorophyll breakdown. After complementation of RCCR mutants with RCCRs exhibiting alternative specificities, patterns of chlorophyll catabolites followed the specificity of complementing RCCRs. Light-dependent leaf cell death observed in different RCCR-deficient lines strictly correlated with the accumulation of RCCs and the release of singlet oxygen, and PAO induction preceded lesion formation. These findings suggest that RCCR absence causes leaf cell death as a result of the accumulation of photodynamic RCC. We conclude that RCCR (together with PAO) is required for the detoxification of chlorophyll catabolites and discuss the biochemical role(s) for this enzyme.  相似文献   

6.
Chlorophyll fluorescence decay kinetics was measured in sulfur deprived cells of green alga Chlamydomonas reinhardtii with a home made picosecond fluorescence laser spectrometer. The measurements were carried out on samples either shortly adapted to the dark (‘Fo conditions’) or treated to reduce Qa (‘Fm conditions’). Bi-exponential fitting of decay kinetics was applied to distinguish two components one of them related to energy trapping (fast component) and the other to charge stabilization and recombination in PS 2 reaction centers (slow component). It was found that the slow component yield increased by 2.0 and 1.2 times when measured under ‘Fo’ and ‘Fm conditions’, respectively, in sulfur deprived cells as compared to control ones. An additional rapid rise of the slow component yield was observed when incubation was carried out in a sealed bioreactor and cell culture turned to anaerobic conditions. The obtained results strongly indicate the existence of the redox control of PS 2 activity during multiphase adaptation of C. reinhardtii to sulfur deficiency stress. Probable mechanisms responsible for the observed increased recombinant fluorescence yield in starved cells are discussed.  相似文献   

7.
8.
 为从能量平衡及分配的角度研究干旱胁迫下甘蔗(Saccharum officinarum)苗期光系统的运转状况, 进而为丰富不同甘蔗品种的抗旱性评价指标及实现对季节性干旱胁迫的快速诊断提供理论依据, 该研究通过对基于Lake模型的叶绿素荧光参数在不同入射光强下变化的动态分析, 研究光合电子传递链中能量平衡状态对不同水分梯度(40%、25%、10%、8%)的响应。结果表明: 两个供试品种(耐旱品种‘ROC22’和非耐旱品种‘ROC16’)的最大光能利用效率(Fv/Fm)、相对电子传递速率(rETR)、光系统II(PSII)量子效率(ΦII)和光化学猝灭(qL)均随着干旱胁迫程度的增加而下降, 可调节性能量耗散(ΦNPQ)和非调节性能量耗散(ΦNO)则随着干旱胁迫程度的增加而上升。除ΦNO之外的叶绿素荧光参数的变化幅度均随着光合有效辐射(PAR)的增加而增大。在干旱胁迫的前中期, 相对于‘ROC22’, ‘ROC16’的PSII反应中心能够维持较高的开放程度; 但‘ROC22’调节能量耗散的能力和对干旱胁迫的敏感程度均高于‘ROC16’, 说明较强的光保护能力是‘ROC22’的抗旱性高于‘ROC16’的主要原因之一。对干旱胁迫敏感且在不同PAR下较为稳定的ΦNO可作为甘蔗苗期抗旱性的快速诊断和评价指标。rETR对递增的PAR的响应表现为随着干旱胁迫程度的增加而提前出现峰值或下降趋势, 但是不同水分梯度下的rETR在PAR较低时并无显著差异, 表明干旱胁迫下光抑制现象的提早出现是造成光系统损伤的首要因素, 高光强对干旱胁迫信号起放大作用。  相似文献   

9.
Yang F  Du YZ  Wang LP  Cao JM  Yu WW 《Gene》2011,485(1):7-15
The complete mitochondrial genome sequence of Liriomyza sativae Blanchard (15,551 bp) was determined and analyzed in this study. The circular genome contained 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and an A + T-rich region. The initiation codons of COI and ND1 were ‘ATCA’ and ‘GTG’, respectively. ND2 gene used the truncated termination codon ‘T’. All the tRNA genes had the typical cloverleaf secondary structures except for tRNASer(AGN) gene, which was found with the absence of a DHU arm. In addition, a tRNA-like secondary structure (tRNAMet) was found in the A + T-rich region. The great difference was that the length of L. sativae A + T-rich region was 597 bp shorter than that of Liriomyza trifolii (Burgess). Meanwhile, some minor differences such as ‘TATA’ block were also observed in L. sativae in contrast to ‘TACA’ block in L. trifolii. There were also some essential structure elements such as ‘TATA’ block, ‘G(A)nT’ block, poly-T stretch and stem-and-loop structure in the A + T-rich region of L. sativae mitochondrial genome.  相似文献   

10.
To understand the genotypic variation of citrus to mild salt stress, a proteomic approach has been carried out in parallel on two citrus genotypes (‘Cleopatra’ and ‘Willow leaf’ mandarins), which differ for Na+ and Cl accumulation, and their cognate autotetraploids (4×). Using two-dimensional electrophoresis approximately 910 protein spots were reproducibly detected in control and salt-stressed leaves of all genotypes. Among them, 44 protein spots showing significant variations at least in one genotype were subjected to mass spectrometry analysis for identification. Salt-responsive proteins were involved in several functions, including photosynthetic processes, ROS scavenging, stress defence, and signalling. Genotype factors affect the salt-responsive pattern, especially that of carbon metabolism. The no ion accumulator ‘Cleopatra’ mandarin genotype showed the highest number of salt-responsive proteins, and up-regulation of Calvin cycle-related proteins. Conversely the ion accumulator ‘Willow leaf’ mandarin showed high levels of several photorespiration-related enzymes. A common set of proteins (twelve spots) displayed higher levels in salt-stressed leaves of 2× and 4× ‘Cleopatra’ and 4× ‘Willow leaf’ mandarin. Interestingly, antioxidant enzymes and heat shock proteins showed higher constitutive levels in 4× ‘Cleopatra’ mandarin and 4× ‘Willow leaf’ mandarin compared with the cognate 2× genotype. This work provides for the first time information on the effect of 8 weeks of salt stress on citrus genotypes contrasting for ion accumulation and their cognate autotetraploids. Results underline that genetic factors have a predominant effect on the salt response, although a common stress response independent from genotype was also found.  相似文献   

11.
Ubiquitin-activating enzyme E1 (UBE1) catalyzes the first step in the ubiquitination reaction, which targets a protein for degradation via a proteasome pathway. UBE1 plays an important role in metabolic processes. In this study, full-length cDNA and DNA sequences of UBE1 gene, designated CrUBE1, were obtained from ‘Wuzishatangju’ (self-incompatible, SI) and ‘Shatangju’ (self-compatible, SC) mandarins. 5 amino acids and 8 bases were different in cDNA and DNA sequences of CrUBE1 between ‘Wuzishatangju’ and ‘Shatangju’, respectively. Southern blot analysis showed that there existed only one copy of the CrUBE1 gene in genome of ‘Wuzishatangju’ and ‘Shatangju’. The temporal and spatial expression characteristics of the CrUBE1 gene were investigated using semi-quantitative RT-PCR (SqPCR) and quantitative real-time PCR (qPCR). The expression level of the CrUBE1 gene in anthers of ‘Shatangju’ was approximately 10-fold higher than in anthers of ‘Wuzishatangju’. The highest expression level of CrUBE1 was detected in pistils at 7 days after self-pollination of ‘Wuzishatangju’, which was approximately 5-fold higher than at 0 h. To obtain CrUBE1 protein, the full-length cDNA of CrUBE1 genes from ‘Wuzishatangju’ and ‘Shatangju’ were successfully expressed in Pichia pastoris. Pollen germination frequency of ‘Wuzishatangju’ was significantly inhibited with increasing of CrUBE1 protein concentrations from ‘Wuzishatangju’.  相似文献   

12.
The inclusion of (R)- and (S)-camphor compounds in α-cyclodextrin has been studied by X-ray crystallography. The crystal structures of the complexes reveal that one guest molecule is accommodated inside the cavity formed by a head-to-head cyclodextrin dimer. In the crystal lattice, the dimers form layers which are successively shifted by half a dimer. In both (R)- and (S)-cases, the camphor molecule exhibits disorder and occupies three major sites with orientations that can be described as either ‘polar’ or ‘equatorial’. Molecular dynamics simulations performed for the observed complexes indicate that although the carbonyl oxygen of both (R)- and (S)-camphor switches between different hydrogen bonding partners, it maintains the observed mode of ‘polar’ or ‘equatorial’ alignment.  相似文献   

13.
Synthetic, single crystal X-ray structural characterizations and vibrational spectroscopic studies are recorded for a number of adducts of 1:2 stoichiometry of silver(I) oxyanion salts for oxyanions of differing basicity (perchlorate, nitrate, carboxylate (as trifluoroacetate (≡‘tfa’))), with a variety of pyridine (≡‘py’) or piperidine (≡‘pip’) bases hindered in the 2- (and, sometimes, 6-) position(s) by methyl or non-coordinating functionalities of other types, the ligands employed being 2-methylpyridine (‘2mp’), 2,6-dimethylpyridine (‘lut’), 2,4,6-trimethylpyridine (‘coll’), quinoline (‘quin’), 2,2,6,6-tetramethylpiperidine (‘tmp’), 2-amino-,6-methylpyridine (‘nmp’), 2-methoxypyridine (‘mop’) and 2-cyanomethylpyridine (‘pcn’); studies are also recorded of adducts with the parent, ‘py’, base and with 4-cyanopyridine (‘cnp’). In the majority of the complexes, the NAgN motif predominates, as might be expected, variously distorted from linearity in response to changes in (competing) basicities of the nitrogen base and any nearby anion or solvent molecule; an unusual variation is found in the highly hindered tmp/tfa adduct which is a monohydrate with interacting water displacing the rather basic anion, the converse being the case in the corresponding nitrate, also a monohydrate. With the less-hindered base mpy, both nitrate and trifluoroacetate are binuclear, with O and OCO bridges corresponding to centrosymmetric four- and eight-membered rings, respectively; the quin/nitrate adduct is more complex, also binuclear but with bis(chelating) nitrate. AgNO3:py (1:3) is found to be binuclear, while with Agtfa/py, a 3:2 adduct [Ag(py)2][Ag2(tfa)3](∞|∞) is found with a novel, polymeric, strongly interacting anion. A further pair of 1:3 adducts, AgNO3:2np (2np = 2-aminopyridine) and Agtfa:nmp, both mononuclear [AgL3]+X are described, differing in the modes of interaction of silver with the three N-bases. In all simple NAgN systems with aromatic ligands, the pair of ligand ‘planes’ is disposed quasi-parallel.The far-IR spectra of [AgL2]Y (L = lut, coll; Y = ClO4, NO3, tfa) and of [Ag(py)n](ClO4) (n = 2,4) have been recorded and the ν(AgN) bands assigned in the range 80-240 cm−1. For the L = lut, coll complexes, there is a clear trend of decreasing ν(AgN) following increasing r(AgN) as the interaction with the counterion increases along the series Y = ClO4, NO3, tfa.  相似文献   

14.
Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate of electron transport (Jmax) and the maximum carboxylation rate of Rubisco (Vcmax), and the PSII performance showed a decreased quantum yield and increased energy dissipation. A parallel response pattern and reduced PSII performance at all three sites indicate that these responses take place in all leaves across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland.  相似文献   

15.
The small GTP-binding protein Rac1, a member of the Rho family of small GTPases, has been implicated in regulation of many cellular processes including adhesion, migration and cytokinesis. These functions have largely been attributed to its ability to reorganize cytoskeleton. While the function of Rac1 is relatively well known in vitro, its role in vivo has been poorly understood. It has previously been shown that in neural crest cells (NCCs) Rac1 is required in a stage-specific manner to acquire responsiveness to mitogenic EGF signals. Here we demonstrate that mouse embryos lacking Rac1 in neural crest cells (Rac1/Wnt1-Cre) showed abnormal craniofacial development including regional ectodermal detachment associated with mesenchymal acellularity culminating in cleft face at E12. Rac1/Wnt1-Cre mutants also displayed inappropriate remodelling of pharyngeal arch arteries and defective outflow tract septation resulting in the formation of a common arterial trunk (‘persistent truncus arteriosus’ or PTA). The mesenchyme around the aortic sac also developed acellular regions, and the distal aortic sac became grossly dysmorphic, forming a pair of bilateral, highly dilated arterial structures connecting to the dorsal aortas. Smooth muscle cells lacking Rac1 failed to differentiate appropriately, and subpopulations of post-migratory NCCs demonstrated aberrant cell death and attenuated proliferation. These novel data demonstrate that while Rac1 is not required for normal NCC migration in vivo, it plays a critical cell-autonomous role in post-migratory NCCs during craniofacial and cardiac development by regulating the integrity of the craniofacial and pharyngeal mesenchyme.  相似文献   

16.
Syntheses and room-temperature single crystal X-ray structural characterizations are recorded for a variety of silver(I) oxyanion (perchlorate, nitrate and trifluoroacetate (‘tfa’) (increasing basicity)) adducts, AgX, with a number of pyridine (‘py’) bases, L, functionalized in the 2-position with N- or O-donor groups, namely 2-amino-, 2-amino-6-methyl-, 2-aminomethyl-, 2-hydroxy-, 2-methoxy- and 2-acetyl- pyridines, ‘2np’, ‘nmp’, ‘amp’, ‘ohp’, ‘mop’, and ‘acp’. A variety of stoichiometries and associated structural types are defined: [Ag(chelate)2]X, L/X = amp,acp/ClO4, [XAg(chelate)2], L/X = acp/tfa, of 1:2 AgX:L stoichiometry; for 1:1 stoichiometry, although a discrete mononuclear complex [(chelate)Ag(O2NO)] is defined for AgNO3: acp (1:1), all others are polymers, successive silver atoms being linked by N,N′-bridging ligands singly (L/X = 2np/ClO4 (?HAgHTAgTHAgH?), amp/ClO4, NO3 (?HTAgHTAg?) (‘H’ ≡ head, ‘T’ = tail)) or pairwise, ?L2AgX2AgL2Ag? (L/X = 2np/tfa, nmp/NO3). More complex polymeric arrays are found with L/X = ohp/NO3, tfa, where interaction with the metal takes place via the O-donor only, the py functionality being protonated, and in adducts of more complex stoichiometry AgNO3:mop (2:3) and AgNO3:2np (3:4).  相似文献   

17.
Myeloid leukemic cells can differentiate into leukemia-derived dendritic cells (DCleu), presenting known/unknown leukemic-antigens. Induced anti-leukemic T-cell-responses are variable. To further elicit DC/DCleu-induced T-cell-response-patterns we performed (functional)flow-cytometry/fluorolysis-assays before/after mixed lymphocyte cultures (MLC) of matched (allogeneic) donor-T-cells (n = 6), T-cells prepared at relapse after stem cell transplantation (n = 4) or (autologous) patients’-T-cells (n = 7) with blast-containing-mononuclear-cells (‘MNC’) or DCleu-containing DC (‘DC’). Compared to ‘MNC’ ‘DC’ were better mediators of anti-leukaemic T-cell-activity, although not in every case effective. We could define cut-off proportions of mature DC, DCleu, proliferating, CD4+, CD8+ and non-naive T-cells after ‘MNC’- or ‘DC’-stimulation, that were predictive for an anti-leukemic-activity of stimulated T-cells as well as a response to immunotherapy. Interestingly especially ratios >1 of CD4:CD8 or CD45RO:CD45RA T-cells were predictive for anti-leukemic function after DC-stimulation.In summary the composition and quality of DC and T-cells after a MLC-stimulating-phase is predictive for a successful ex-vivo and in-vivo anti-leukemic response, especially with respect to proportions of proliferating, CD4+ and CD45RO+ T-cells. Successful cytotoxicity and the development of a T-cell-memory after ‘DC’-stimulation could be predictive for the clinical course of the disease and may pave the way to develop adoptive immunotherapy, especially for patients at relapse after SCT.  相似文献   

18.
Taxonomic resolution of the Nosema/Vairimorpha clade has been augmented with DNA sequences of the small subunit (SSU) and large subunit (LSU) ribosomal RNA (rRNA) and the arrangement of SSU and LSU. Based on the two characteristics, the clade is largely divided into two, i.e. ‘true’ Nosema sub-group and non-‘true’ Nosema sub-group within the clade. Our study shows that a novel Nosema species isolated from Pieris rapae has mixed characteristics of the ‘true’ and non-‘true’ Nosema sub-group based on the topology of SSU and LSU sequences. To our knowledge, this may be the first case of the incongruent phylogenetic placement of SSU and LSU in the Nosema/Vairimorpha clade. Additionally, the length of internal transcribed spacer (ITS) can be a diagnostic tool to distinguish ‘true’ Nosema from non-’true’ Nosema in the Nosema/Vairimorpha clade based on its nucleotide length as reported before.  相似文献   

19.
20.
Fecal corticosterone concentration (FCC) is increasingly being used as a noninvasive indicator of stress in assessment of nonhuman animal welfare. The aim of this study was to evaluate effects of breed, cage type, reproductive phase, and their interactions on FCC levels in doe rabbits. A total of 252 doe rabbits were randomly assigned to 2 groups. Does were individually housed in either standard dimension cages (SC) or in cages with a volume more than double that of the SC. Bigger cages (BC) were equipped with a plastic foot mat. Breed, cage type, and reproductive phase significantly affected FCC. New Zealand hybrids showed higher FCCs (p < .001) when compared witho the autochthonous breed (27.77 ± 0.47 vs. 24.61 ± 0.36 pg g?1, respectively). Increased cage size coupled with a plastic foot mat resulted in a significant decrease in doe FCC. The highest FCCs were detected at partum (BC: 30.40 ± 0.81 pg g?1; SC: 33.36 ± 0.86 pg g?1; p ≤ .05), followed by postweaning (BC: 25.09 ± 0.95 pg g?1; SC: 27.63 ± 0.95 pg g?1; p ≤ .05). These results support the hypothesis that measurement of FCC provides a useful indicator of chronic stress in doe rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号