首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hee-Won Seo 《FEBS letters》2009,583(1):55-60
The interplay between hypoxia-inducible factor-1α (HIF-1α) and histone deacetylase (HDACs) have been well studied; however, the mechanism of cross-talk is unclear. Here, we investigated the roles of HDAC4 and HDAC5 in the regulation of HIF-1α function and its associated mechanisms. HDAC4 and HDAC5 enhanced transactivation by HIF-1α without stabilizing HIF-1α. HDAC4 and HDAC5 physically associated with HIF-1α through the inhibitory domain (ID) that is the binding site for factor inhibiting HIF-1 (FIH-1). In the presence of these HDACs, binding of HIF-1α to FIH-1 decreased, whereas binding to p300 increased. These results indicate that HDAC4 and HDAC5 increase the transactivation function of HIF-1α by promoting dissociation of HIF-1α from FIH-1 and association with p300.

Structured summary:

MINT-6802187:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with FIH1 (uniprotkb:Q9NWT6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802058:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by pull down (MI:0096)MINT-6802021:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by anti bait coimmunoprecipitation (MI:0006)MINT-6802036:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802102:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by pull down (MI:0096)MINT-6802121, MINT-6802156:P300 (uniprotkb:Q09472) physically interacts (MI:0218) with HIF1 alpha (uniprotkb:Q16665) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

3.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) activates NF-κB signaling pathways through the two C-terminal regions, CTAR1 and CTAR2. BS69 has previously been shown to be involved in LMP1-induced c-Jun N-terminal kinase activation through CTAR2 by interacting with tumor necrosis factor (TNFR) receptor-associated factor 6. In the present study, our manipulation of BS69 expression clearly indicates that BS69 negatively regulates LMP1-mediated NF-κB activation and up-regulates IL-6 mRNA expression and IκB degradation. Our immunoprecipitation experiments suggest that BS69 decreases complex formation between LMP1 and TNFR-associated death domain protein (TRADD).

Structured summary

MINT-7032462: LMP1 (uniprotkb:P03230) physically interacts (MI:0218) with TRADD (uniprotkb:Q15628) by anti bait coimmunoprecipitation (MI:0006)MINT-7032451: BS69 (uniprotkb:Q15326) and LMP1 (uniprotkb:P03230) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7032478: LMP1 (uniprotkb:P03230) physically interacts (MI:0218) with BRAM1 (uniprotkb:Q15326) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

4.
Epstein-Barr virus latent membrane protein 1 (LMP1) activates NF-κB signaling pathways through two C-terminal regions, CTAR1 and CTAR2. Previous studies have demonstrated that BS69, a multidomain cellular protein, regulates LMP1/CTAR2-mediated NF-κB activation by interfering with the complex formation between TRADD and LMP1/CTAR2. Here, we found that BS69 directly interacted with the LMP1/CTAR1 domain and regulated LMP1/CTAR1-mediated NF-κB activation and subsequent IL-6 production. Regarding the mechanisms involved, we found that BS69 directly interacted with TRAF3, a negative regulator of NF-κB activation. Furthermore, small-interfering RNA-mediated knockdown experiments revealed that TRAF3 was involved in the BS69-mediated suppression of LMP1/CTAR1-induced NF-κB activation.

Structured summary

MINT-7556591: lmp1 (uniprotkb:P03230) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556646: TRAF6 (uniprotkb:Q9Y4K3) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556658, MINT-7556670: TRAF3 (uniprotkb:Q13114) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556607: TRAF1 (uniprotkb:Q13077) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556634: TRAF5 (uniprotkb:O00463) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556622: TRAF2 (uniprotkb:Q12933) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

5.
FIH-1, factor inhibiting hypoxia-inducible factor-1 (HIF-1), regulates oxygen sensing by hydroxylating an asparagine within HIF-α. It also hydroxylates asparagines in many proteins containing ankyrin repeats, including Notch1–3, p105 and IκBα. Relative binding affinity and hydroxylation rate are crucial determinants of substrate selection and modification. We determined the contributions of substrate sequence composition and length and of oxygen concentration to the FIH-1-binding and/or hydroxylation of Notch1–4 and compared them with those for HIF-1α. We also demonstrated hydroxylation of two asparagines in Notch2 and 3, corresponding to Sites 1 and 2 of Notch1, by mass spectrometry for the first time.Our data demonstrate that substrate length has a much greater influence on FIH-1-dependent hydroxylation of Notch than of HIF-1α, predominantly through binding affinity rather than maximal reaction velocity. The Km value of FIH-1 for Notch1, <0.2 μM, is at least 250-fold lower than that of 50 μM for HIF-1α. Site 1 of Notch1–3 appeared the preferred site of FIH-1 hydroxylation in these substrates. Interestingly, binding of Notch4 to FIH-1 was observed with an affinity almost 10-fold lower than for Notch1–3, but no hydroxylation was detected. Importantly, we demonstrate that the Km of FIH-1 for oxygen at the preferred Site 1 of Notch1–3, 10–19 μM, is an order of magnitude lower than that for Site 2 or HIF-1α. Hence, at least during in vitro hydroxylation, Notch is likely to become efficiently hydroxylated by FIH-1 even under relatively severe hypoxic conditions, where HIF-1α hydroxylation would be reduced.  相似文献   

6.
7.
Sabine Krawczyk 《FEBS letters》2010,584(8):1463-1020
In Corynebacterium glutamicum, the unphosphorylated 15-kDa OdhI protein inhibits the activity of the 2-oxoglutarate dehydrogenase complex (ODHc) by binding to OdhA, which in corynebacteria and mycobacteria is a large fusion protein with two major domains exhibiting structural features of E1o and E2 proteins. Using copurification and surface plasmon resonance experiments with different OdhI and OdhA length variants it was shown that the entire forkhead-associated (FHA) domain of OdhI and the C-terminal dehydrogenase domain of OdhA are required for interaction. The FHA domain was also sufficient for inhibition of ODHc activity. Phosphorylated OdhI was binding-incompetent and did not inhibit ODHc activity.

Structured summary

MINT-7713362:OdhI (uniprotkb:Q8NQJ3) binds (MI:0407) to OdhA (uniprotkb:Q8NRC3) by surface plasmon resonance (MI:0107)MINT-7713261:OdhI (uniprotkb:Q8NQJ3) physically interacts (MI:0915) with OdhA (uniprotkb:Q8NRC3) by pull down (MI:0096)  相似文献   

8.
Ildikó Nagy 《FEBS letters》2008,582(29):4003-4007
Cochlin is colocalized with type II collagen in the extracellular matrix of cochlea and has been suggested to interact with this collagen. Here we show that the second von Willebrand type A domain of cochlin has affinity for type II collagen, as well as type I and type IV collagens whereas the LCCL-domain of cochlin has no affinity for these proteins. The implications of these findings for the mechanism whereby cochlin mutations cause the dominant negative DFNA9-type hearing loss are discussed.

Structured summary

MINT-6796048:
type I collagen (uniprotkb:P02452) binds (MI:0407) to cochlin-vWA2 uniprotkb:O43405) by surface plasmon resonance (MI:0107)
MINT-6796166:
type III collagen (uniprotkb:P02462) binds (MI:0407) to cochlin-vWA2 (uniprotkb:O43405) by surface plasmon resonance (MI:0107)
MINT-6796062:
type II collagen (uniprotkb:P02458) binds (MI:0407) to cochlin-vWA2 (uniprotkb:O43405) by surface plasmon resonance (MI:0107)
  相似文献   

9.
We previously reported that gentamicin (GM) specifically binds to heat-shock protein with subunit molecular masses of 70 kDa (HSP70). In the present study, we have investigated the effects of GM binding on HSP70-assisted protein folding in vitro. The C-terminal, and not the N-terminal of HSP70 was found to bind to GM. GM significantly suppressed refolding of firefly luciferase in the presence of HSP70 and HSP40, although the ATPase activity of HSP70 was unaffected by GM. A surface plasmon resonance analysis revealed that GM specifically interferes with the binding of HSP70 to a model peptide that mimics the exposed hydrophobic surface of the folding intermediates. These results indicated that GM inhibits the chaperone activity of HSP70 and may suppress protein folding via inhibition of HSP70 in vivo.

Structured summary

MINT-7384283: HSP40 (uniprotkb:P25685) binds (MI:0407) to HSP70 (uniprotkb:P34930) by surface plasmon resonance (MI:0107)MINT-7384430: RNaseA (uniprotkb:P61823) binds (MI:0407) to HSP70 (uniprotkb:P34930) by surface plasmon resonance (MI:0107)  相似文献   

10.
Fibroblast growth factor-21 (FGF21) signaling requires the presence of β-Klotho, a co-receptor with a very short cytoplasmic domain. Here we show that FGF21 binds directly to β-Klotho through its C-terminus. Serial C-terminal truncations of FGF21 weakened or even abrogated its interaction with β-Klotho in a Biacore assay, and led to gradual loss of potency in a luciferase reporter assay but with little effect on maximal response. In contrast, serial N-terminal truncations of FGF21 had no impact on β-Klotho binding. Interestingly, several of them exhibited characteristics of partial agonists with minimal effects on potency. These data demonstrate that the C-terminus of FGF21 is critical for binding to β-Klotho and the N-terminus is critical for fibroblast growth factor receptor (FGFR) activation.

Structured summary

MINT-6799939: FGFR1c (uniprotkb:P11362) binds (MI:0407) to β-Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)MINT-6799907, MINT-6799922: FGF21 (uniprotkb: Q9NSA1) binds (MI:0407) to β-Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)  相似文献   

11.
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

Structured summary

MINT-7905256: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A6 (uniprotkb:P06703) by surface plasmon resonance (MI:0107)MINT-7905063: MDM2 (uniprotkb:Q00987) and s100A1 (uniprotkb:P23297) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905376: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) physically interact (MI:0915) by competition binding (MI:0405)MINT-7905130: s100A6 (uniprotkb:P06703) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905207: s100A6 (uniprotkb:P06703) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905043: s100B (uniprotkb:P04271) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905196: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905358: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) physically interact (MI:0915) by fluorescence polarization spectroscopy (MI:0053)MINT-7905220: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100B (uniprotkb:P04271) by surface plasmon resonance (MI:0107)MINT-7905104: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905229: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A1 (uniprotkb:P23297) by surface plasmon resonance (MI:0107)MINT-7905317, MINT-7905162: s100B (uniprotkb:P04271) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905238: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A2 (uniprotkb:P29034) by surface plasmon resonance (MI:0107)MINT-7905174, MINT-7905308: s100A1 (uniprotkb:P23297) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905247: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A4 (uniprotkb:P26447) by surface plasmon resonance (MI:0107)MINT-7905090: s100A2 (uniprotkb:P29034) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905142, MINT-7905326: MDM2 (uniprotkb:Q00987) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905185, MINT-7905347: s100A2 (uniprotkb:P29034) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)  相似文献   

12.
The tyrosine kinase, c-Abl, plays important roles in many aspects of cellular function. Previous reports showed that c-Abl is involved in NF-κB signaling. However, the functions of c-Abl in innate immunity are still unknown. Here we demonstrate that the mitochondrial antiviral signaling (MAVS) protein can be physically associated with c-Abl in vivo and in vitro. MAVS interacted with c-Abl through its Card and TM domain. A phosphotyrosine-specific antibody indicated that MAVS was phosphorylated by c-Abl. Functional impairment of c-Abl attenuated MAVS or VSV induced type-I IFN production. Importantly, c-Abl knockdown in MCF7 cells displayed impaired MAVS-mediated NF-κB and IRF3 activation. Taken together, our results suggest that c-Abl modulates innate immune response through MAVS.

Structured summary

MINT-7297498, MINT-7297511, MINT-7297557, MINT-7297574: MAVS (uniprotkb:Q7Z434) physically interacts (MI:0915) with c-Abl (uniprotkb:P00519) by anti tag coimmunoprecipitation (MI:0007)MINT-7297542: c-Abl (uniprotkb:P00519) physically interacts (MI:0915) with MAVS (uniprotkb:Q7Z434) by anti bait coimmunoprecipitation (MI:0006)MINT-7297526: c-Abl (uniprotkb:P00519) physically interacts (MI:0915) with MAVS (uniprotkb:Q7Z434) by far western blotting (MI:0047)  相似文献   

13.
Mutations in the lamin A/C (LMNA) gene that cause Hutchinson-Gilford progeria syndrome (HGPS) lead to expression of a protein called progerin with 50 amino acids deleted from the tail of prelamin A. In cells from patients with HGPS, both the amount and distribution of heterochromatin are altered. We designed in vitro assays to ask whether such alterations might reflect changes in chromatin, DNA and/or histone binding properties of progerin compared to wild-type lamin C-terminal tails. We show that progerin tail has a reduced DNA/chromatin binding capacity and modified trimethylated H3K27 binding pattern, offering a molecular mechanism for heterochromatin alterations related to HGPS.

Structured summary

MINT-7893924, MINT-7893941, MINT-7893990, MINT-7894005, MINT-7894023, MINT-7894038: H3 (uniprotkb:Q71DI3) binds (MI:0407) to LaminA (uniprotkb:P02545) by surface plasmon resonance (MI:0107)MINT-7893957, MINT-7893974, MINT-7894055: H3 (uniprotkb:Q71DI3) binds (MI:0407) to progerin (uniprotkb:Q6UYC3) by surface plasmon resonance (MI:0107)  相似文献   

14.
Recent studies show LDL receptor-related protein 1B, LRP1B as a transducer of extracellular signals. Here, we identify six interacting partners of the LRP1B cytoplasmic region by yeast two-hybrid screen and confirmed their in vivo binding by immunoprecipitation. One of the partners, PICK1 recognizes the C-terminus of LRP1B and LRP1. The cytoplasmic domains of LRP1B are phosphorylated by PKCα about 100 times more efficiently than LRP1. Binding of PICK1 inhibits phosphorylation of LRP1B, but does not affect LRP1 phosphorylation.This study presents the possibility that LRP1B participates in signal transduction which PICK1 may regulate by inhibiting PKCα phosphorylation of LRP1B.

Structured summary

MINT-6801075: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with SNTG2 (uniprotkb:Q925E0) by two hybrid (MI:0018)MINT-6801030, MINT-6801468: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by two hybrid (MI:0018)MINT-6801284: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by anti tag coimmunoprecipitation (MI:0007)MINT-6801108: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Grb7 (uniprotkb:Q03160) by two hybrid (MI:0018)MINT-6801090: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by two hybrid (MI:0018)MINT-6801008: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by two hybrid (MI:0018)MINT-6801052: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-2 (uniprotkb:Q9ERE9) by two hybrid (MI:0018)MINT-6801258, MINT-6801271: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by anti tag coimmunoprecipitation (MI:0007)MINT-6801244: RanBPM (uniprotkb:P69566) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801131, MINT-6801158: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by anti tag coimmunoprecipitation (MI:0007)MINT-6801231: PICK1 (uniprotkb:Q80VC8) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801173: Jip-1b (uniprotkb:Q9WVI9-1) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

15.
The present study demonstrates that theaflavins exploit p53 to impede metastasis in human breast cancer cells. Our data suggest that p53-dependent reactive oxygen species (ROS) induce p53-phosphorylation via p38MAPK in a feedback loop to inhibit IκBα-phosphorylation and NF-κB/p65 nuclear translocation, thereby down-regulating the metastatic proteins metalloproteinase (MMP)-2 and MMP-9. When wild-type p53-expressing MCF-7 cells are transfected with p53 short-interfering RNA, or treated with a pharmacological inhibitor of ROS, theaflavins fail to inhibit NF-κB-mediated cell migration. On the other hand, NF-κB over-expression bestows MCF-7 cells with resistance to the anti-migratory effect of theaflavins. These results indicate that inhibition of NF-κB via p53-ROS crosstalk is a pre-requisite for theaflavins to accomplish the anti-migratory effect in breast cancer cells.

Structured summary

MINT-7295816: p53 (uniprotkb:P04637) physically interacts (MI:0915) with IKK beta (uniprotkb:O14920) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

16.
Helicobacter pylori secretes a unique virulence factor, Tipα, that enters gastric cells and both stimulates the production of the TNF-α and activates the NF-κB pathway. The structures of a truncated version of Tipα (TipαN34) in two crystal forms are presented here. Tipα adopts a novel β1α1α2β2β3α3α4 topology that can be described as a combination of three domains. A first region consists in a short flexible extension, a second displays a dodecin-like fold and a third is a helical bundle domain similar to the sterile alpha motif (SAM). Analysis of the oligomerisation states of TipαN34 in the crystals and in solution suggests that the disulfide bridges could hold together Tipα monomers during their secretion in the gastric environment.

Structured summary

MINT-7033680:TIP alpha (uniprotkb:B2UTN0) and TIP alpha (uniprotkb:B2UTN0) bind (MI:0407) by cosedimentation (MI:0027)  相似文献   

17.
Junjian Wang 《FEBS letters》2009,583(4):643-7733
Kaempferol is a dietary flavonoid that is thought to function as a selective estrogen receptor modulator. In this study, we established that kaempferol also functions as an inverse agonist for estrogen-related receptors alpha and gamma (ERRα and ERRγ). We demonstrated that kaempferol binds to ERRα and ERRγ and blocks their interaction with coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Kaempferol also suppressed the expressions of ERR-target genes pyruvate dehydrogenase kinase 2 and 4 (PDK2 and PDK4). This evidence suggests that kaempferol may exert some of its biological effect through both estrogen receptors and estrogen-related receptors.

Structured summary:

MINT-6824653:PGC-1 alpha (uniprotkb:Q9UBK2) and ERR gamma (uniprotkb: P62508) bind (MI:0407) by surface plasmon resonance (MI:0107)  相似文献   

18.
19.
20.
Cells can not only sense the type of extracellular matrix (ECM) protein that is present in the microenvironment, but they can also sense its density. Here, we investigated the effects of ECM protein density on adipokine secretion and insulin signaling in adipocytes. To this end, 3T3-L1 adipocytes were cultured on the surface of polyacrylamide gels that were coated with gradient densities of a collagen type I and fibronectin mixture. We found that high density ECM causes a decrease in insulin signaling and adiponectin secretion, whereas the secretion of monocyte chemoattractant protein-1 (MCP-1) was increased via the activation of nuclear factor-κB (NF-κB). These results indicate that the density of the ECM directly regulates the inflammatory response and insulin sensitivity of adipocytes.

Structured summary

MINT-7992217: Irs1 (uniprotkb:P35569) physically interacts (MI:0915) with phosphatidylinositol 3-kinase 85 kDa regulatory subunit alpha (uniprotkb:P26450) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号