首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
When the Y chromosome of a Mus musculus domesticus male mouse (caught in Tirano, Italy) is placed on a C57BL/6J genetic background, approximately half of the XY (B6.YTIR) progeny develop into normal-appearing but infertile females. We have previously reported that the primary cause of infertility can be attributed to their oocytes. To identify the primary defect in the XY oocyte, we examined the onset and progress of meiotic prophase in the B6.YTIR fetal ovary. Using bromo-deoxyuridine incorporation and culture, we determined that the germ cells began to enter meiosis at the developmental ages and in numbers comparable to those in the control XX ovary. Furthermore, the meiotic prophase appeared to progress normally until the late zygotene stage. However, the oocytes that entered meiosis early in the XY ovary failed to complete the meiotic prophase. On the other hand, a considerable number of oocytes entered meiosis at late developmental stages and completed the meiotic prophase in the XY ovary. We propose that the timing of entry into meiosis and the XY chromosomal composition influence the survival of oocytes during meiotic prophase in the fetal ovary.  相似文献   

3.
Mammalian germ cells proliferate by mitosis and begin meiotic development in fetal ovaries. The aim of this study is to demonstrate the germ cell proliferation and apoptosis, and elucidated some of the key developmental events and stages in Mongolian sheep fetal ovaries. Fourty three pairs of sheep fetal ovaries at days 37-99 of gestation were collected from local slaughterhouse. Studies in histological structure of ovaries and germ cell apoptosis were achieved by employing light microscopy and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). Following fetal gestation age increasing, three key development events were detected: oogonia fleetly proliferated by mitosis and clustered at days 37-55 of gestation in ovarian cortex forming oogonia nest; the formation of ovigerous cords (OC) and disorganization took place at day 51-81, especially at days 63-66 more OC developed, and more germ cells in OC entered meiosis prophase; subsequently, with the OC disappeared, primordial follicles gradually prevailed from day 73 of gestation. Another observation was germ cells apoptosis and the number of apoptotic germ cells showed a peak from day 58 to day 73 (P<0.05) and germ cells in OC were prone to apoptosis. The study provides evidence about histological feature and germ cells apoptosis in sheep fetal ovaries.  相似文献   

4.
There are still several unanswered questions and problems about the recently claimed possibility of producing functional germ cells in vitro from pluripotent embryonic stem cells (ESCs). In the present paper, we compared by single-cell analysis the capability of putative primordial germ cells (PGCs), produced in vitro from ESCs, and that of endogenous PGCs isolated from embryos, to enter and progress through meiotic prophase I. Using a protocol previously reported to be suitable to produce female germ cells from mouse ESC monolayers, we first identified putative PGCs by analysing the expression pattern of several markers such as SSEA1, APase, OCT4, NANOG, MVH and SCP3 of pre- and post migratory PGCs. Next, after isolation of such cells from culture, we tested their meiotic capability. The evaluation at 2-5 days of culture of the number of cells showing meiotic nuclear SCP3 staining in cytospreads showed that it remained nearly constant in the putative PGCs, whereas it increased markedly in endogenous PGCs. Moreover, we observed that in putative PGCs, the nuclear distribution or expression of SCP3 and other meiotic markers such as DMC1, gH2AX and SCP1 were always highly abnormal in comparison to that observed in endogenous cultured PGCs. We conclude that although the formation of cells showing characteristics of PGCs can occur efficiently from ESCs in vitro, these cells possess impaired capability to enter and progress through meiotic prophase I.  相似文献   

5.
Data are presented on G6PD electrophoretic patterns in fetal ovarian preparations of G6PD heterozygotes. The results indicate that in the early or mitotic period of female germ cell development, only a single X chromosome is active in each oogonium just as is the case for X inactivated somatic tissue. However, in the later or meiotic stage, reactivation of the inactive X chromosome in each oocyte occurs so that two functional X chromosomes are present in each oocyte.  相似文献   

6.
Genetic modifications causing germ cell death during meiotic prophase in the mouse frequently have sexually dimorphic phenotypes where oocytes reach more advanced stages than spermatocytes. To determine to what extent these dimorphisms are due to differences in male versus female meiotic prophase development, we compared meiotic chromosome events in the two sexes in both wild-type and mutant mice. We report the abundance and time course of appearance of structural and recombination-related proteins of fetal oocyte nuclei. Oocytes at successive days post coitus show rapid, synchronous meiotic prophase development compared with the continuous spermatocyte development in adult testis. Consequently, a genetic defect requiring 2–3 days from the onset of prophase to reach arrest registers pachytene as the developmental endpoint in oocytes. Pachytene spermatocytes, on the other hand, which normally accumulate during days 4–10 after the onset of prophase, will be rare, giving the appearance of an earlier endpoint than in oocytes. We conclude that these different logistics create apparent sexually dimorphic endpoints. For more pronounced sexual dimorphisms, we examined meiotic prophase of mice with genetic modifications of meiotic chromosome core components that cause male but not female sterility. The correlations between male sterility and alterations in the organization of the sex chromosome cores and X–Y chromatin may indicate that impaired signals from the XY domain (XY chromosome cores, chromatin, dense body and sex body) may interfere with the progression of the spermatocyte through prophase. Oocytes, in the absence of the X–Y pair, do not suffer such defects.  相似文献   

7.
Summary Germ cells in the developing rabbit testis were found to undergo several distinct changes in the first two weeks after birth. Mitotic activity, which had been high in the late fetal period, reached a peak on the day before birth, then diminished steadily and ceased entirely after five days of age. Extensive germ cell degeneration occurred in the first week after birth resulting in accumulation of pools of degenerating germ cells in the central portions of the seminiferous cords. Following shortly after the peak of mitotic activity, germ cells at various stages of preleptotene could be found in squash preparations. This corresponded to the time when germ cells in the rabbit ovary enter and proceed through meiotic prophase. There was no evidence of entry into leptotene or later stages of meiosis in the neonatal testis. The findings suggest that a similar stimulus for entry into meiosis may exist in both sexes, but a blockage occurs in the male.Technical assistance was provided by Margaret Randolph and David Knibbs  相似文献   

8.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

9.
There is much information on oogenesis from the resumption of the first meiotic division to oocyte maturation in many vertebrates; however, there have been very few studies on early oogenesis from oogonial proliferation to the initiation of meiosis. In the present study, we investigated the histological changes during early oogenesis in barfin flounder (Verasper moseri). In fish with a total length (TL) of 50mm (TL 50mm fish), active oogonial proliferation was observed. In TL 60mm fish, oocytes with synaptonemal complexes were observed. Before the initiation of active oogonial proliferation, somatic cells which surrounded a few oogonial germ cells, started to proliferate to form the oogonial cysts that accompanied oogonial proliferation. In TL 70mm fish, however, the cyst structure of the oocyte was gradually broken by the invagination of somatic cells, and finally the oocyte became a single cell surrounded by follicle cells. Upon comparison of nuclear size, DNA-synthesizing germ cells could be divided into two types: small nuclear cells and large nuclear cells. Based on histological observation, we propose that the small nuclear cells were in the mitotic prophase of oogonia and the large nuclear cells were in the meiotic prophase of oocytes, and that the nuclear size increases upon the initiation of meiosis.  相似文献   

10.
The phenotypic sex of an individual mammal is determined by the sex of its gonads, i.e. testes or ovaries. This in turn is determined by the presence or absence of a small region of the Y chromosome, located near the X-Y pairing region in man and on the short arm of the Y chromosome in the mouse. The testis-determining region of the Y appears to exert its primary effect by directing the supporting-cell lineage of the gonad to differentiate as Sertoli cells, acting at least in part cell-autonomously. The phenotypic sex of a germ cell, i.e. whether it undergoes spermatogenesis or oogenesis, is determined at least in the mouse by whether or not it enters meiotic prophase before birth. This depends not on its own sex chromosome constitution, but on its cellular environment. A germ cell in or near normal testis cords (made up mainly of Sertoli cells) is inhibited from entering meiosis until after birth; one that escapes this inhibition will develop into an oocyte even if it is in a male animal and is itself XY in chromosome constitution.  相似文献   

11.
In this study it was shown that the injection of retinoic acid (RA) into incubated eggs on day 9 or 14 induced entry the males germ cells into preleptotene stage of prophase I on day 17, which are absent in the control embryos. At the same time the meiosis marker SCP3 was detected in the germ cells. Which was also absent at control embryos. On day 19 in male embryos the number of male germ cells at the stage preleptoteny increased, but there were no germ cells in the following stages of the prophase of meiosis. In 20-day-old chicks meiotic germ cells were absent. Thus, white it is shown that the influence of RA on the developing chicken embryos induces the entry of germ cells into preleptotene stage of prophase I meiosis. However, further meiotic transformations don't occur. Thus RA is only one of many factors providing meiotic cell division.  相似文献   

12.
13.
Hajnal A  Berset T 《The EMBO journal》2002,21(16):4317-4326
In the Caenorhabditis elegans hermaphrodite germline, spatially restricted mitogen-activated protein kinase (MAPK) signalling controls the meiotic cell cycle. First, the MAPK signal is necessary for the germ cells to progress through pachytene of meiotic prophase I. As the germ cells exit pachytene and enter diplotene/diakinesis, MAPK is inactivated and the developing oocytes arrest in diakinesis (G(2)/M arrest). During oocyte maturation, a signal from the sperm reactivates MAPK to promote M phase entry. Here, we show that the MAPK phosphatase LIP-1 dephosphorylates MAPK as germ cells exit pachytene in order to maintain MAPK in an inactive state during oocyte development. Germ cells lacking LIP-1 fail to arrest the cell cycle at the G(2)/M boundary, and they enter a mitotic cell cycle without fertilization. LIP-1 thus coordinates oocyte cell cycle progression and maturation with ovulation and fertilization.  相似文献   

14.
Handel MA 《Theriogenology》1998,49(2):423-430
Meiotic recombination is essential to hold homologous chromosomes together so that they can separate accurately in the formation of gametes, thus preventing fetal loss due to aneuploidy. How do germ cells know when they have finished genetic recombination and that it is time to enter the meiotic division phase, and what are the elements that signal the onset of the division phase? During spermatogenesis there is no arrest at the end of meiotic prophase (as there is in oogenesis) and signals for progress into the meiotic division phase may be closely related to events of chromosome pairing and recombination. Methods for culture of male germ cells have been used to show that spermatocytes become competent for some aspects of the division phase by the early pachytene stage, long before they would normally enter division. Evidence suggests that establishment of homologous chromosome pairing is one aspect of acquiring competence. Activation of the cell cycle regulator MPF also appears to be important, and there is a requirement for activity of topoisomerase II in order for spermatocytes to exit prophase and enter the meiotic division phase. Understanding how these molecular entities tie into monitoring the completion of recombination and meiotic progress will be instructive about important gametic safeguards preventing aberrant chromosome segregation and resultant aneuploidy.  相似文献   

15.
R. Francis  M. K. Barton  J. Kimble    T. Schedl 《Genetics》1995,139(2):579-606
We have characterized 31 mutations in the gld-1 (defective in germline development) gene of Caenorhabditis elegans. In gld-1(null) hermaphrodites, oogenesis is abolished and a germline tumor forms where oocyte development would normally occur. By contrast, gld-1(null) males are unaffected. The hermaphrodite germline tumor appears to derive from germ cells that enter the meiotic pathway normally but then exit pachytene and return to the mitotic cycle. Certain gld-1 partial loss-of-function mutations also abolish oogenesis, but germ cells arrest in pachytene rather than returning to mitosis. Our results indicate that gld-1 is a tumor suppressor gene required for oocyte development. The tumorous phenotype suggests that gld-1(+) may function to negatively regulate proliferation during meiotic prophase and/or act to direct progression through meiotic prophase. We also show that gld-1(+) has an additional nonessential role in germline sex determination: promotion of hermaphrodite spermatogenesis. This function of gld-1 is inferred from a haplo-insufficient phenotype and from the properties of gain-of-function gld-1 mutations that cause alterations in the sexual identity of germ cells.  相似文献   

16.
In mammals, germ cells within the developing gonad follow a sexually dimorphic pathway. Germ cells in the murine ovary enter meiotic prophase during embryogenesis, whereas germ cells in the embryonic testis arrest in G0 of mitotic cell cycle and do not enter meiosis until after birth. In mice, retinoic acid (RA) signaling has been implicated in controlling entry into meiosis in germ cells, as meiosis in male embryonic germ cells is blocked by the activity of a RA-catabolizing enzyme, CYP26B1. However, the mechanisms regulating mitotic arrest in male germ cells are not well understood. Cyp26b1 expression in the testes begins in somatic cells at embryonic day (E) 11.5, prior to mitotic arrest, and persists throughout fetal development. Here, we show that Sertoli cell-specific loss of CYP26B1 activity between E15.5 and E16.5, several days after germ cell sex determination, causes male germ cells to exit from G0, re-enter the mitotic cell cycle and initiate meiotic prophase. These results suggest that male germ cells retain the developmental potential to differentiate in meiosis until at least at E15.5. CYP26B1 in Sertoli cells acts as a masculinizing factor to arrest male germ cells in the G0 phase of the cell cycle and prevents them from entering meiosis, and thus is essential for the maintenance of the undifferentiated state of male germ cells during embryonic development.  相似文献   

17.
Apoptosis is the main cause of primordial germ cell and oocyte degeneration in the developing fetal ovary. In this study we examined by immunohistochemistry and immunoblotting the expression of the anti- and pro-apoptotic proteins Bcl-2 and Bax in primordial germ cells and fetal oocytes during pre natal oogenesis in the mouse embryo. While Bcl-2 and Bax were not detectable in primordial germ cells in vivo, both proteins were upregulated when they undergo apoptosis in culture. Treatment with the stem cell factor (SCF), a growth factor known to partially reduce primordial germ cell apoptosis, resulted in decreased Bax expression. Bcl-2 was barely detectable in oocytes entering into meiosis and its expression did not change during the stage of meiotic prophase I examined. On the contrary, high levels of Bax was expressed in degenerating oocytes while low levels of the protein was present in many apparently healthy oocytes between 15.5 days post coitum (d.p.c.) and birth, when Bax was downregulated. Oocytes isolated from 15.5 days post coitum (d.p.c.) ovaries that progress through prophase I and undergo a wave of apoptosis at the stage of pachytene/diplotene in vitro, showed a pattern of Bax expression similar to the in vivo condition. Although the addition of SCF to the culture medium reduced significantly apoptosis in oocytes at the pachytene/diplotene stages, it was not possible to directly correlate this effect with the downregulation of Bax in the surviving oocytes. These findings indicate that whereas a balance between Bcl-2 and Bax might regulate apoptosis of proliferating primordial germ cells under a partial control by SCF, Bax-mediated apoptosis in meiotic oocytes may be due to intrinsic meiotic checkpoints which act to monitor aberrant DNA recombination rather than to a growth factor-dependent process. Elimination of supernumerary oocytes might be a subsequent apoptotic phenomenon controlled by the availability of growth factors such as SCF within the ovary.  相似文献   

18.
19.
Progression of germ cells through meiosis is regulated by phosphorylation events. We previously showed the key role of cyclin dependent kinases in meiotic divisions of rat spermatocytes co-cultured with Sertoli cells (SC). In the present study, we used the same culture system to address the role of mitogen-activated protein kinases (MAPKs) in meiotic progression. Phosphorylated ERK1/2 were detected in vivo and in freshly isolated SC and in pachytene spermatocytes (PS) as early as 3 h after seeding on SC. The yield of the two meiotic divisions and the percentage of highly MPM-2-labeled pachytene and secondary spermatocytes (SII) were decreased in co-cultures treated with U0126, an inhibitor of the ERK-activating kinases, MEK1/2. Pre-incubation of PS with U0126 resulted in a reduced number of in vitro formed round spermatids without modifying the number of SII or the MPM-2 labeling of PS or SII. Conversely, pre-treatment of SC with U0126 led to a decrease in the percentage of highly MPM-2-labeled PS associated with a decreased number of SII and round spermatids. These results show that meiotic progression of spermatocytes is dependent on SC-activated MAPKs. In addition, high MPM-2 labeling was not acquired by PS cultured alone in Sertoli cell conditioned media, indicating a specific need for cell-cell contact between germ cells and SC.  相似文献   

20.
Fetal mouse testes and ovaries with their urogenital connections were cultured singly or in pairs on Nuclepore filters. When a testis in which the sex was not yet morphologically detectable was cultured together with older ovaries containing germ cells which were progressing through the meiotic prophase, the male germ cells were triggered to enter meiosis. When older fetal testes in which the testicular cords have developed were cultured together with ovaries of the same age with germ cells in meiosis, the oocytes were prevented from reaching diplotene stage. It was concluded that the fetal male and female gonads secrete diffusable substances which influence germ cell differentiation. The male gonad secretes a "meiosis-preventing substance" (MPS) which can arrest the female germ cells within the meiotic prophase. The female gonad secretes a "meiosis-inducing substance" (MIS) which can trigger the nondifferentiated male germ cells to enter meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号