首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that forearm blood flow (FBF) during moderate intensity dynamic exercise would meet the demands of the exercise and that postexercise FBF would quickly recover. In contrast, during heavy exercise, FBF would be inadequate causing a marked postexercise hyperemia and sustained increase in muscle oxygen uptake (VO(2musc)). Six subjects did forearm exercise (1-s contraction/relaxation, 1-s pause) for 5 min at 25 and 75% of peak workload. FBF was determined by Doppler ultrasound, and O(2) extraction was estimated from venous blood samples. In moderate exercise, FBF and VO(2musc) increased within 2 min to steady state. Rapid recovery to baseline suggested adequate O(2) supply during moderate exercise. In contrast, FBF was not adequate during heavy dynamic exercise. Immediately postexercise, there was an approximately 50% increase in FBF. Furthermore, we observed for the first time in the recovery period an increase in VO(2musc) above end-exercise values. During moderate exercise, O(2) supply met requirements, but with heavy forearm exercise, inadequate O(2) supply during exercise caused accumulation of a large O(2) deficit that was repaid during recovery.  相似文献   

2.
The purpose of this study was to examine the interactions of adaptations in O2 transport and utilization under conditions of altered arterial O2 content (CaO2), during rest to exercise transitions. Simultaneous measures of alveolar (VO2alv) and leg (VO2mus) oxygen uptake and leg blood flow (LBF) responses were obtained in normoxic (FiO2 (inspired fraction of O2) = 0.21), hypoxic (FiO2 = 0.14), and hyperoxic (FiO2 = 0.70) gas breathing conditions. Six healthy subjects performed transitions in leg kicking exercise from rest to 48 +/- 3 W. LBF was measured continuously with pulsed and echo Doppler ultrasound methods, VO2alv was measured breath-by-breath at the mouth and VO2mus was determined from LBF and radial artery and femoral vein blood samples. Even though hypoxia reduced CaO2 to 175.9 +/- 5.0 from 193.2 +/- 5.0 mL/L in normoxia, and hyperoxia increased CaO2 to 205.5 +/- 4.1 mL/L, there were no differences in the absolute values of VO2alv or VO2mus across gas conditions at any of the rest or exercise time points. A reduction in leg O2 delivery in hypoxia at the onset of exercise was compensated by a nonsignificant increase in O2 extraction and later by small increases in LBF to maintain VO2mus. The dynamic response of VO2alv was slower in the hypoxic condition; however, hyperoxia did not affect the responses of oxygen delivery or uptake at the onset of moderate intensity leg kicking exercise. The finding of similar VO2mus responses at the onset of exercise for all gas conditions demonstrated that physiological adaptations in LBF and O2 extraction were possible, to counter significant alterations in CaO2. These results show the importance of the interplay between O2 supply and O2 utilization mechanisms in meeting the challenge provided by small alterations in O2 content at the onset of this submaximal exercise task.  相似文献   

3.
ATP-sensitive potassium (KATP) channels have been suggested to contribute to coronary and skeletal muscle vasodilation during exercise, either alone or interacting in a parallel or redundant process with nitric oxide (NO), prostaglandins (PGs), and adenosine. We tested the hypothesis that KATP channels, alone or in combination with NO and PGs, regulate exercise hyperemia in forearm muscle. Eighteen healthy young adults performed 20 min of moderate dynamic forearm exercise, with forearm blood flow (FBF) measured via Doppler ultrasound. After steady-state FBF was achieved for 5 min (saline control), the KATP inhibitor glibenclamide (Glib) was infused into the brachial artery for 5 min (10 microg.dl(-1).min(-1)), followed by saline infusion during the final 10 min of exercise (n = 9). Exercise increased FBF from 71 +/- 11 to 239 +/- 24 ml/min, and FBF was not altered by 5 min of Glib. Systemic plasma Glib levels were above the therapeutic range, and Glib increased insulin levels by approximately 50%, whereas blood glucose was unchanged (88 +/- 2 vs. 90 +/- 2 mg/dl). In nine additional subjects, Glib was followed by combined infusion of NG-nitro-L-arginine methyl ester (L-NAME) plus ketorolac (to inhibit NO and PGs, respectively). As above, Glib had no effect on FBF but addition of L-NAME + ketorolac (i.e., triple blockade) reduced FBF by approximately 15% below steady-state exercise levels in seven of nine subjects. Interestingly, triple blockade in two subjects caused FBF to transiently and dramatically decrease. This was followed by an acute recovery of flow above steady-state exercise values. We conclude 1) opening of KATP channels is not obligatory for forearm exercise hyperemia, and 2) triple blockade of NO, PGs, and KATP channels does not reduce hyperemia more than the inhibition of NO and PGs in most subjects. However, some subjects are sensitive to triple blockade, but they are able to restore FBF acutely during exercise. Future studies are required to determine the nature of these compensatory mechanisms in the affected individuals.  相似文献   

4.
Hypoxia during exercise augments blood flow in active muscles to maintain the delivery of O(2) at normoxic levels. However, the impact of hyperoxia on skeletal muscle blood flow during exercise is not completely understood. Therefore, we tested the hypothesis that the hyperemic response to forearm exercise during hyperbaric hyperoxia would be blunted compared with exercise during normoxia. Seven subjects (6 men/1 woman; 25 ± 1 yr) performed forearm exercise (20% of maximum) under normoxic and hyperoxic conditions. Forearm blood flow (FBF; in ml/min) was measured using Doppler ultrasound. Forearm vascular conductance (FVC; in ml·min(-1)·100 mmHg(-1)) was calculated from FBF and blood pressure (in mmHg; brachial arterial catheter). Studies were performed in a hyperbaric chamber with the subjects supine at 1 atmospheres absolute (ATA) (sea level) while breathing normoxic gas [21% O(2), 1 ATA; inspired Po(2) (Pi(O(2))) ≈ 150 mmHg] and at 2.82 ATA while breathing hyperbaric normoxic (7.4% O(2), 2.82 ATA, Pi(O(2)) ≈ 150 mmHg) and hyperoxic (100% O(2), 2.82 ATA, Pi(O(2)) ≈ 2,100 mmHg) gas. Resting FBF and FVC were less during hyperbaric hyperoxia compared with hyperbaric normoxia (P < 0.05). The change in FBF and FVC (Δ from rest) during exercise under normoxia (204 ± 29 ml/min and 229 ± 37 ml·min(-1)·100 mmHg(-1), respectively) and hyperbaric normoxia (203 ± 28 ml/min and 217 ± 35 ml·min(-1)·100 mmHg(-1), respectively) did not differ (P = 0.66-0.99). However, the ΔFBF (166 ± 21 ml/min) and ΔFVC (163 ± 23 ml·min(-1)·100 mmHg(-1)) during hyperbaric hyperoxia were substantially attenuated compared with other conditions (P < 0.01). Our data suggest that exercise hyperemia in skeletal muscle is highly dependent on oxygen availability during hyperoxia.  相似文献   

5.
The aim of this study was to investigate local muscle O(2) consumption (muscV(O(2))) and forearm blood flow (FBF) in resting and exercising muscle by use of near-infrared spectroscopy (NIRS) and to compare the results with the global muscV(O(2)) and FBF derived from the well-established Fick method and plethysmography. muscV(O(2)) was derived from 1) NIRS using venous occlusion, 2) NIRS using arterial occlusion, and 3) the Fick method [muscV(O(2(Fick)))]. FBF was derived from 1) NIRS and 2) strain-gauge plethysmography. Twenty-six healthy subjects were tested at rest and during sustained isometric handgrip exercise. Local variations were investigated with two independent and simultaneously operating NIRS systems at two different muscles and two measurement depths. muscV(O(2)) increased more than fivefold in the active flexor digitorum superficialis muscle, and it increased 1.6 times in the brachioradialis muscle. The average increase in muscV(O(2(Fick))) was twofold. FBF increased 1.4 times independent of the muscle or the method. It is concluded that NIRS is an appropriate tool to provide information about local muscV(O(2)) and local FBF because both place and depth of the NIRS measurements reveal local differences that are not detectable by the more established, but also more global, Fick method.  相似文献   

6.
We tested the hypothesis that vasoregulatory mechanisms completely counteract the effects of sudden changes in arterial perfusion pressure on exercising muscle blood flow. Twelve healthy young subjects (7 female, 5 male) lay supine and performed rhythmic isometric handgrip contractions (2 s contraction/ 2 s relaxation 30% maximal voluntary contraction). Forearm blood flow (FBF; echo and Doppler ultrasound), mean arterial blood pressure (arterial tonometry), and heart rate (ECG) were measured. Moving the arm between above the heart (AH) and below the heart (BH) level during contraction in steady-state exercise achieved sudden approximately 30 mmHg changes in forearm arterial perfusion pressure (FAPP). We analyzed cardiac cycles during relaxation (FBF(relax)). In an AH-to-BH transition, FBF(relax) increased immediately, in excess of the increase in FAPP (approximately 69% vs. approximately 41%). This was accounted for by pressure-related distension of forearm resistance vasculature [forearm vascular conductance (FVC(relax)) increased by approximately 19%]. FVC(relax) was restored by the second relaxation. Continued slow decreases in FVC(relax) stabilized by 2 min without restoring FBF(relax). In a BH-to-AH transition, FBF(relax) decreased immediately, in excess of the decrease in FAPP (approximately 37% vs. approximately 29%). FVC(relax) decreased by approximately 14%, suggesting pressure-related passive recoil of resistance vessels. The pattern of FVC(relax) was similar to that in the AH-to-BH transition, and FBF(relax) was not restored. These data support rapid myogenic regulation of vascular conductance in exercising human muscle but incomplete flow restoration via slower-acting mechanisms. Local arterial perfusion pressure is an important determinant of steady-state blood flow in the exercising human forearm.  相似文献   

7.
To determine the cutaneous and resting skeletal muscle vascular responses to prolonged exercise, total forearm blood flow (FBF-plethysmography) (5 men) and forearm muscle blood flow (MBF-[125I]antipyrine clearance) (4 men) were measured throughout 55-60 min of bicycle exercise (600-750 kpm/min). Heart rate (HR) and esophageal temperature (Tes) were also measured throughout exercise. FBF showed only small changes during the first 10 min followed by progressive increments during the 10-40 min interval and smaller rises thereafter. For the full 60 min of exercise, there was an average increase in FBF of 8.26 ml/100 ml-min. MBF showed an initial fall with the onset of exercise (on the average from 3.84 to 2.13 ml/100 ml-min) which was sustained or fell further as exercise continued, indicating that increments in FBF were confined to skin. Much of the increase in FBF occurred despite essentially constant Tes. Results suggest that the progressive decrements in central venous pressure, stroke volume, and arterial pressure previously seen during prolonged exercise are due in part to progressive increments in cutaneous blood flow and volume.  相似文献   

8.
Our aim was to test the hypothesis that apnea-induced hemodynamic responses during dynamic exercise in humans differ between those who show strong bradycardia and those who show only mild bradycardia. After apnea-induced changes in heart rate (HR) were evaluated during dynamic exercise, 23 healthy subjects were selected and divided into a large response group (L group; n = 11) and a small response group (S group; n = 12). While subjects performed a two-legged dynamic knee extension exercise at a work load that increased HR by 30 beats/min, apnea-induced changes in HR, cardiac output (CO), mean arterial pressure (MAP), arterial O(2) saturation (Sa(O(2))), forearm blood flow (FBF), and leg blood flow (LBF) were measured. During apnea, HR in the L group (54 ± 2 beats/min) was lower than in the S group (92 ± 3 beats/min, P < 0.05). CO, Sa(O(2)), FBF, LBF, forearm vascular conductance (FVC), leg vascular conductance (LVC), and total vascular conductance (TVC) were all reduced, and MAP was increased in both groups, although the changes in CO, TVC, LBF, LVC, and MAP were larger in the L group than in the S group (P < 0.05). Moreover, there were significant positive linear relationships between the reduction in HR and the reductions in TVC, LVC, and FVC. We conclude that individuals who show greater apnea-induced bradycardia during exercise also show greater vasoconstriction in both active and inactive muscle regions.  相似文献   

9.
To investigate quantitatively how sweating and cutaneous blood flow responses at the onset of dynamic exercise are affected by increasing exercise intensity in mildly heated humans, 18 healthy male subjects performed cycle exercise at 30, 50, and 70% of maximal O2 uptake (VO2 max) for 60 s in a warm environment. The study was conducted in a climatic chamber with a regulated ambient temperature of 35 degrees C and relative humidity of 50%. The subjects rested in the semisupine position in the chamber for 60 min, and then sweating rate (SR) and skin blood flow were measured during cycle exercise at three different intensities. Changes in the heart rate, rating of perceived exertion, and mean arterial blood pressure were proportional to increasing exercise intensity, whereas esophageal and mean skin temperatures were essentially constant throughout the experiment. The SR on the chest, forearm, and thigh, but not on the palm, increased significantly with increasing exercise intensity (P < 0.05). The mean SR of the chest, forearm, and thigh increased 0.05 mg.cm-2.min-1 with an increase in exercise intensity equivalent to 10% VO2 max. On the other hand, the cutaneous vascular conductance (CVC) on the chest, forearm, and palm decreased significantly with increasing exercise intensity (P < 0.05). The mean CVC of the chest and forearm decreased 5.5% and the CVC on the palm decreased 8.0% with an increase in exercise intensity equivalent to 10% VO2 max. In addition, the reduction in CVC was greater on the palm than on the chest and forearm at all exercise intensities (P < 0.01). We conclude that nonthermal sweating and cutaneous blood flow responses are exercise intensity dependent but directionally opposite at the onset of dynamic exercise in mildly heated humans. Furthermore, cutaneous blood flow responses to increased exercise intensity are greater in glabrous (palm) than in nonglabrous (chest and forearm) skin.  相似文献   

10.
We investigated the effects of increases in calf volume on cardiovascular responses during handgrip (HG) exercise and post-HG exercise muscle ischemia (PEMI). Seven subjects completed two trials: one control (no occlusion) and one venous occlusion (VO) session. Both trials included a baseline measurement followed by 15 min of rest (REST), 2 min of HG, and 2 min of PEMI. VO was applied at 100 mmHg via cuffs placed around both distal thighs during REST, HG, and PEMI. Mean arterial pressure, heart rate, forearm blood flow (FBF) in the nonexercised arm, and forearm vascular resistance (FVR) in the nonexercised arm (FVR) were measured. During REST and HG, there were no significant differences between trials in all parameters. During PEMI in the control trial, mean arterial pressure and FVR were significantly greater and FBF was significantly lower than baseline values (P < 0.05 for each). In contrast, in the VO trial, FBF and FVR responses were different from control responses. In the VO trial, FBF was significantly greater than in the control trial (4.7 +/- 0.5 vs. 2.5 +/- 0.3 ml x 100 ml(-1) x min(-1), P < 0.05) and FVR was significantly lower (28.0 +/- 4.8 vs. 49.1 +/- 4.6 units, respectively, P < 0.05). These results indicate that increases in vascular resistance in the nonexercised limb induced by activation of the muscle chemoreflex can be attenuated by increases in calf volume.  相似文献   

11.
The purpose of this study was to determine whether blood flow (BF) and vascular resistance (VR) are controlled differently in the nonactive arm and leg during submaximal rhythmic exercise. In eight healthy men we simultaneously measured BF to the forearm and calf (venous occlusion plethysmography) and arterial blood pressure (sphygmomanometry) and calculated whole limb VR before (control) and during 3 min of cycling with the contralateral leg at 38, 56, and 75% of peak one-leg O2 uptake (VO2). During the initial phase of exercise (0-1.5 min) at all work loads, BF increased and VR decreased in the forearm (P less than 0.05), whereas calf BF and VR remained at control levels. Thereafter, BF decreased and VR increased in parallel and progressive fashion in both limbs. At end exercise, forearm BF and VR were not different from control values (P greater than 0.05); however, in the calf, BF tended to be lower (P less than 0.05 at 75% peak VO2 only) and VR was higher (23 +/- 9, 44 +/- 14, and 88 +/- 23% above control at 38, 56, and 75% of peak VO2, respectively, all P less than 0.05). In a second series of studies, forearm and calf skin blood flow (laser-Doppler velocimetry) and arterial pressure were measured during the same levels of exercise in six of the subjects. Compared with control, skin BF was unchanged and VR was increased (P less than 0.05) in the forearm by end exercise at all work loads, whereas calf skin BF increased (P less than 0.05) and VR decreased (P less than 0.05). The present findings indicate that skeletal muscle and skin VR are controlled differently in the nonactive forearm and calf during the initial phase of rhythmic exercise with the contralateral leg. Skeletal muscle vasodilation occurs in the forearm but not in the calf; forearm skin vasoconstricts, whereas calf skin vasodilates. Finally, during exercise a time-dependent vasoconstriction occurs in the skeletal muscle of both limbs.  相似文献   

12.
The purpose of this study was to test the hypothesis that sympathetic vasoconstriction is rapidly blunted at the onset of forearm exercise. Nine healthy subjects performed 5 min of moderate dynamic forearm handgrip exercise during -60 mmHg lower body negative pressure (LBNP) vs. without (control). Beat-by-beat forearm blood flow (Doppler ultrasound), arterial blood pressure (finger photoplethysmograph), and heart rate were collected. LBNP elevated resting heart rate by approximately 45%. Mean arterial blood pressure was not significantly changed (P = 0.196), but diastolic blood pressure was elevated by approximately 10% and pulse pressure was reduced by approximately 20%. At rest, there was a 30% reduction in forearm vascular conductance (FVC) during LBNP (P = 0.004). The initial rapid increase in FVC with exercise onset reached a plateau between 10 and 20 s of 126.6 +/- 4.1 ml. min(-1). 100 mmHg(-1) in control vs. only 101.6 +/- 4.1 ml. min(-1). 100 mmHg(-1) in LBNP (main effect of condition, P = 0.003). This difference was quickly abolished during the second, slower phase of adaptation in forearm vascular tone to steady state. These data are consistent with a rapid onset of functional sympatholysis, in which local substances released with the onset of muscle contractions impair sympathetic neural vasoconstrictor effectiveness.  相似文献   

13.
Computer simulation of blood flow and O2 consumption (QO2) of leg muscles and of blood flow through other vascular compartments was made to estimate the potential effects of circulatory adjustments to moderate leg exercise on pulmonary O2 uptake (VO2) kinetics in humans. The model revealed a biphasic rise in pulmonary VO2 after the onset of constant-load exercise. The length of the first phase represented a circulatory transit time from the contracting muscles to the lung. The duration and magnitude of rise in VO2 during phase 1 were determined solely by the rate of rise in venous return and by the venous volume separating the muscle from the lung gas exchange sites. The second phase of VO2 represented increased muscle metabolism (QO2) of exercise. With the use of a single-exponential model for muscle QO2 and physiological estimates of other model parameters, phase 2 VO2 could be well described as a first-order exponential whose time constant was within 2 s of that for muscle QO2. The use of unphysiological estimates for certain parameters led to responses for VO2 during phase 2 that were qualitatively different from QO2. It is concluded that 1) the normal response of VO2 in humans to step increases in muscle work contains two components or phases, the first determined by cardiovascular phenomena and the second primarily reflecting muscle metabolism and 2) the kinetics of VO2 during phase 2 can be used to estimate the kinetics of muscle QO2. The simulation results are consistent with previously published profiles of VO2 kinetics for square-wave transients.  相似文献   

14.
We tested the hypothesis that nitric oxide (NO) and prostaglandins (PGs) contribute to the rapid vasodilation that accompanies a transition from mild to moderate exercise. Nine healthy volunteers (2 women and 7 men) lay supine with forearm at heart level. Subjects were instrumented for continuous brachial artery infusion of saline (control condition) or combined infusion of N(G)-nitro-L-arginine methyl ester (L-NAME) and ketorolac (drug condition) to inhibit NO synthase and cyclooxygenase, respectively. A step increase from 5 min of steady-state mild (5.4 kg) rhythmic, dynamic forearm handgrip exercise (1 s of contraction followed by 2 s of relaxation) to moderate (10.9 kg) exercise for 30 s was performed. Steady-state forearm blood flow (FBF; Doppler ultrasound) and forearm vascular conductance (FVC) were attenuated in drug compared with saline (control) treatment: FBF = 196.8 +/- 30.8 vs. 281.4 +/- 34.3 ml/min and FVC = 179.3 +/- 29.4 vs. 277.8 +/- 34.8 ml.min(-1).100 mmHg(-1) (both P < 0.01). FBF and FVC increased from steady state after release of the initial contraction at the higher workload in saline and drug conditions: DeltaFBF = 72.4 +/- 8.7 and 52.9 +/- 7.8 ml/min, respectively, and DeltaFVC = 66.3 +/- 7.3 and 44.1 +/- 7.0 ml.min(-1).100 mmHg(-1), respectively (all P < 0.05). The percent DeltaFBF and DeltaFVC were not different during saline infusion or combined inhibition of NO and PGs: DeltaFBF = 27.2 +/- 3.1 and 28.1 +/- 3.8%, respectively (P = 0.78) and DeltaFVC = 25.7 +/- 3.2 and 26.0 +/- 4.0%, respectively (P = 0.94). The data suggest that NO and vasodilatory PGs are not obligatory for rapid vasodilation at the onset of a step increase from mild- to moderate-intensity forearm exercise. Additional vasodilatory mechanisms not dependent on NO and PG release contribute to the immediate and early increase in blood flow in an exercise-to-exercise transition.  相似文献   

15.
We addressed two questions concerned with the metabolic cost and performance of respiratory muscles in healthy young subjects during exercise: 1) does exercise hyperpnea ever attain a "critical useful level"? and 2) is the work of breathing (WV) at maximum O2 uptake (VO2max) fatiguing to the respiratory muscles? During progressive exercise to maximum, we measured tidal expiratory flow-volume and transpulmonary pressure- (Ptp) volume loops. At rest, subjects mimicked their maximum and moderate exercise Ptp-volume loops, and we measured the O2 cost of the hyperpnea (VO2RM) and the length of time subjects could maintain reproduction of their maximum exercise loop. At maximum exercise, the O2 cost of ventilation (VE) averaged 10 +/- 0.7% of the VO2max. In subjects who used most of their maximum reserve for expiratory flow and for inspiratory muscle pressure development during maximum exercise, the VO2RM required 13-15% of VO2max. The O2 cost of increasing VE from one work rate to the next rose from 8% of the increase in total body VO2 (VO2T) during moderate exercise to 39 +/- 10% in the transition from heavy to maximum exercise; but in only one case of extreme hyperventilation, combined with a plateauing of the VO2T, did the increase in VO2RM equal the increase in VO2T. All subjects were able to voluntarily mimic maximum exercise WV for 3-10 times longer than the duration of the maximum exercise. We conclude that the O2 cost of exercise hyperpnea is a significant fraction of the total VO2max but is not sufficient to cause a critical level of "useful" hyperpnea to be achieved in healthy subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To isolate the peripheral adaptations to training, five normal subjects exercised the nondominant (ND) wrist flexors for 41 +/- 11 days, maintaining an exercise intensity below the threshold required for cardiovascular adaptations. Before and after training, intracellular pH and the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) were measured by 31P magnetic resonance spectroscopy. Also maximal O2 consumption (VO2 max), muscle mass, and forearm blood flow were determined by graded systemic exercise, magnetic resonance imaging, and venous occlusion plethysmography, respectively. Blood flow, Pi/PCr, and pH were measured in both forearms at rest and during submaximal wrist flexion at 5, 23, and 46 J/min. Training did not affect VO2 max, exercise blood flow, or muscle mass. Resting pH, Pi/PCr, and blood flow were also unchanged. After training, the ND forearm demonstrated significantly lower Pi/PCr at 23 and 46 J/min. Endurance, measured as the number of contractions to exhaustion, also was increased significantly (63%) after training in the ND forearm. We conclude that 1) forearm training results in a lower Pi/PCr at identical submaximal work loads; 2) this improvement is independent of changes in VO2 max, muscle mass, or limb blood flow; and 3) these differences are associated with improved endurance and may reflect improved oxidative capacity of skeletal muscle.  相似文献   

17.
We tested the hypothesis that rapid vasodilation proportional to contraction intensity contributes to the immediate (first cardiac cycle after initial contraction) exercise hyperemia. Ten healthy subjects performed single 1-s isometric forearm contractions at 5, 10, 15, 20, 30, 50, and 70% maximal voluntary contraction intensity (MVC) in arm above heart (AH) and below heart (BH) positions. Forearm blood flow (FBF; brachial artery mean blood velocity, Doppler ultrasound), mean arterial pressure (arterial tonometry), and heart rate (electrocardiogram) were measured beat by beat. Venous emptying (measured with a forearm strain gauge) was already maximized at 5% MVC, indicating that increases in contraction intensity did not further empty the forearm veins. Immediate increases in FBF were linearly proportional to contraction intensity from 5 to 70% MVC in AH (slope = 4.4 +/- 0.5%DeltaFBF/%MVC). In BH, the immediate increase in FBF demonstrated a curvilinear relationship with increasing contraction intensity and was greater than AH at 15, 20, 30, and 50% MVC (P < 0.05). Peak changes in FBF were greater in BH vs. AH from 10 to 50% MVC, even when venous refilling was complete (P < 0.05). These data support the existence of a rapid-acting vasodilatory mechanism(s) at the onset of human forearm exercise.  相似文献   

18.
Individuals greater than or equal to 60 yr of age are more susceptible to hyperthermia than younger people. However, the mechanisms involved remain unclear. To gain further insight, we examined the heat loss responses of 7 young (24-30 yr) and 13 older (58-74 yr) men during 20 min of cycle exercise [67.5% maximal O2 uptake (VO2max)] in a warm environment (30 degrees C, 55% relative humidity). Forearm blood flow (FBF) and chest sweat rate (SR) were plotted as a function of the weighted average of mean skin and esophageal temperatures [Tes(w)] during exercise. The sensitivity and threshold for each response were defined as the slope and Tes(w) at the onset of the response, respectively. When the young sedentary men were compared with a subgroup (n = 7) of the older physically active men with similar VO2max, the SR and FBF responses of the two groups did not differ significantly. However, when the young men were compared with a subgroup of older sedentary men with a similar maximal O2 pulse, the SR and FBF sensitivities were significantly reduced by 62 and 40%, respectively. These findings suggest that during a short exercise bout either 1) there is no primary effect of aging on heat loss responses but, rather, changes are associated with the age-related decrease in VO2max or 2) the decline in heat loss responses due to aging may be masked by repeated exercise training.  相似文献   

19.
The effect of 33 h of wakefulness on the control of forearm cutaneous blood flow and forearm sweating during exercise was studied in three men and three women. Subjects exercised for 30 min at 60% peak O2 consumption while seated behind a cycle ergometer (Ta = 35 degrees C, Pw = 1.0 kPa). We measured esophageal temperature (Tes), mean skin temperature, and arm sweating continuously and forearm blood flow (FBF) as an index of skin blood flow, twice each minute by venous occlusion plethysmography. During steady-state exercise, Tes was unchanged by sleep loss. The sensitivity of FBF to Tes was depressed an average of 30% (P less than 0.05) after 33 h of wakefulness with a slight decrease (-0.15 degrees C, P less than 0.05) in the core temperature threshold for vasodilatory onset. Sleep loss did not alter the Tes at which the onset of sweating occurred; however, sensitivity of arm sweating to Tes tended to be lower but was not significant. Arm skin temperature was not different between control and sleep loss experiments. Reflex cutaneous vasodilation during exercise appeared to be reduced by both central and local factors after 33 h of wakefulness.  相似文献   

20.
It has been suggested that, during heavy-intensity exercise, O(2) delivery may limit oxygen uptake (.VO2) kinetics; however, there are limited data regarding the relationship of blood flow and .VO2 kinetics for heavy-intensity exercise. The purpose was to determine the exercise on-transient time course of femoral artery blood flow (Q(leg)) in relation to .VO2 during heavy-intensity, single-leg, knee-extension exercise. Five young subjects performed five to eight repeats of heavy-intensity exercise with measures of breath-by-breath pulmonary .VO2 and Doppler ultrasound femoral artery mean blood velocity and vessel diameter. The phase 2 time frame for .VO2 and Q(leg) was isolated and fit with a monoexponent to characterize the amplitude and time course of the responses. Amplitude of the phase 3 response was also determined. The phase 2 time constant for .VO2 of 29.0 s and time constant for Q(leg) of 24.5 s were not different. The change (Delta) in .VO2 response to the end of phase 2 of 0.317 l/min was accompanied by a DeltaQ(leg) of 2.35 l/min, giving a DeltaQ(leg)-to-Delta.VO2 ratio of 7.4. A slow-component .VO2 of 0.098 l/min was accompanied by a further Q(leg) increase of 0.72 l/min (DeltaQ(leg)-to-Delta.VO2 ratio = 7.3). Thus the time course of Q(leg) was similar to that of muscle .VO2 (as measured by the phase 2 .VO2 kinetics), and throughout the on-transient the amplitude of the Q(leg) increase achieved (or exceeded) the Q(leg)-to-.VO2 ratio steady-state relationship (ratio approximately 4.9). Additionally, the .VO2 slow component was accompanied by a relatively large rise in Q(leg), with the increased O(2) delivery meeting the increased Vo(2). Thus, in heavy-intensity, single-leg, knee-extension exercise, the amplitude and kinetics of blood flow to the exercising limb appear to be closely linked to the .VO2 kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号