首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 55-kDa form of membrane-associated phosphatidylinositol 4-kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified 10,166-fold from Saccharomyces cerevisiae. The purification procedure included solubilization of microsome membranes with 1% Triton X-100 followed by chromatography with DE52, hydroxylapatite I, Q-Sepharose, Mono Q, and hydroxylapatite II. The procedure resulted in a nearly homogeneous 55-kDa phosphatidylinositol 4-kinase preparation. The 55-kDa phosphatidylinositol 4-kinase and the previously purified 45-kDa phosphatidylinositol 4-kinase differed with respect to their amino acid composition, isoelectric points, and peptide maps. Furthermore, the two forms of phosphatidylinositol 4-kinase did not show an immunological relationship. Maximum 55-kDa phosphatidylinositol 4-kinase activity was dependent on magnesium (10 mM) or manganese (0.5 mM) ions and Triton X-100 at the pH optimum of 7.0. The activation energy for the reaction was 12 kcal/mol, and the enzyme was labile above 30 degrees C. The enzyme was inhibited by thioreactive agents, MgADP, and calcium ions. A detailed kinetic analysis of the purified enzyme was performed using Triton X-100/phosphatidylinositol-mixed micelles. 55-kDa phosphatidylinositol 4-kinase activity followed saturation kinetics with respect to the bulk and surface concentrations of phosphatidylinositol and followed surface dilution kinetics. The interfacial Michaelis constant (Km) and the dissociation constant (Ks) for phosphatidylinositol in the Triton X-100 micelle surface were 1.3 mol % and 0.035 mM, respectively. The Km for MgATP was 0.36 mM. 55-kDa phosphatidylinositol 4-kinase catalyzed a sequential reaction mechanism as indicated by the results of kinetic and isotopic exchange reactions. The enzyme bound to phosphatidylinositol before ATP and released phosphatidylinositol 4-phosphate before ADP. The enzymological and kinetic properties of the 55-kDa phosphatidylinositol 4-kinase differed significantly from those of the 45-kDa phosphatidylinositol 4-kinase. This may suggest that the two forms of phosphatidylinositol 4-kinase from S. cerevisiae are regulated differentially in vivo.  相似文献   

2.
Phosphatidylinositol (PI) kinase activity of platelet membranes was solubilized and partially purified by anion-exchange chromatography to measure the initial enzymatic rates. Kinetic studies were performed in the presence of Triton X-100 to obtain mixed micelles. The partially purified enzyme exhibited a Michaelian behaviour towards ATP, with a Km of 58 microM. The enzymatic rates were dependent upon Triton concentrations. Upon increasing its concentration, this detergent exhibited an activating effect followed by an inhibitory one. The optimal micellar Triton concentration was proportionnal to the PI concentration used in the assay. Conversely, the behaviour of the enzyme towards PI was dependent upon the Triton concentration. However, when PI concentration was expressed as its surfacic concentration within the micelles, the activity became independent of the detergent concentration, and a Km value of 0.09 mol/mol was estimated. Therefore, in vitro phosphorylation of phosphatidylinositol by PI kinase is rate-limited by an intramicellar reaction, and provides a study model for the in vivo reaction.  相似文献   

3.
The membrane-associated phospholipid biosynthetic enzyme phosphatidylinositol synthase (cytidine 5'-diphospho-1,2-diacyl-sn-glycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) was purified 1,000-fold from the microsomal fraction of Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of the microsomal membranes, CDPdiacylglycerol-Sepharose (Larson et al., Biochemistry 15:974-979, 1976) affinity chromatography, and chromatofocusing. The procedure resulted in the isolation of a nearly homogeneous protein preparation with an apparent minimum subunit molecular weight of 34,000, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Phosphatidylinositol synthase was dependent on manganese and Triton X-100 for maximum activity. The pH optimum was 8.0. Thioreactive agents inhibited enzyme activity. The energy of activation was found to be 35 kcal/mol (146,540 J/mol). The enzyme was reasonably stable at temperatures of up to 60 degrees C.  相似文献   

4.
The membrane-associated phospholipid biosynthetic enzyme CDP-diacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) was purified 2,300-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of mitochondrial membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and hydroxylapatite chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiation inactivation of mitochondrial associated and purified CDP-diacylglycerol synthase suggested that the molecular weight of the native enzyme was 114,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme preparation yielded two subunits with molecular weights of 56,000 and 54,000. Antibodies prepared against the purified enzyme immunoprecipitated CDP-diacylglycerol synthase activity and subunits. CDP-diacylglycerol synthase activity was dependent on magnesium ions and Triton X-100 at pH 6.5. Thio-reactive agents inhibited activity. The activation energy for the reaction was 9 kcal/mol, and the enzyme was thermally labile above 30 degrees C. The Km values for CTP and phosphatidate were 1 and 0.5 mM, respectively, and the Vmax was 4,700 nmol/min/mg. Results of kinetic and isotopic exchange reactions suggested that the enzyme catalyzes a sequential Bi Bi reaction mechanism.  相似文献   

5.
A membrane-bound phosphatidylinositol (PtdIns) kinase has been purified approximately 9500-fold to apparent homogeneity from sheep brains. The purification procedure involves: solubilisation of the membrane fraction with Triton X-100, ammonium sulphate fractionation and a number of ion-exchange and gel-filtration chromatography steps. The purified enzyme exhibited a final specific activity of 1149 nmol.min-1.mg-1. The molecular mass of the enzyme was estimated to be 55 kDa by SDS/PAGE and 150 +/- 10 kDa by HPLC gel filtration in the presence of Triton X-100. Kinetic measurements have shown that the apparent Km value of PtdIns kinase for the utilisation of PtdIns is 22 microM and for ATP 67 microM. Mg2+ was the most effective divalent cation activator of PtdIns kinase, with maximal enzymatic activity reached at a concentration of 10 mM Mg2+. In addition to adenosine and ADP, the 2'(3')-O-(2,4,6-trinitrophenyl) derivative of ATP was found to be a strong competitive inhibitor of the enzyme, with a Ki of 32 microM. Enzymatic activity was found to be stimulated by Triton X-100 but inhibited by deoxycholate.  相似文献   

6.
Phosphatidylinositol kinase was solubilized and purified from porcine liver microsomes to apparent homogeneity. The purification procedure includes: solubilization of microsomes by 2% Triton X-100, ammonium sulfate precipitation (20-35% saturation), Reactive blue agarose chromatography, DEAE-Sephacel chromatography and two consecutive hydroxyapatite chromatographies. A total of 4900-fold purification with 8% recovery of enzyme activity was achieved. The molecular weight of the enzyme as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 55000. The enzyme is stimulated in a decreasing order by Mg2+, Fe2+, Mn2+, Fe3+ and Co2+. Ca2+ inhibited Mg2+-stimulated activity with an I50 of 0.4 mM. Apparent Km values for phosphatidylinositol and ATP are 120 and 60 microM, respectively. The enzyme is inhibited by adenosine (I50 = 70 microM), ADP (I50 = 120 microM) and quercetin (I50 = 100 microM). The enzyme is also sensitive to sulfhydryl inhibitors. Using the purified enzyme as an immunogen, we have successfully prepared antibodies for phosphatidylinositol kinase in rabbits. The antibodies appear to recognize an antigen of Mr 55000 on SDS-polyacrylamide gel electrophoresis from various porcine tissues in Western blot analysis.  相似文献   

7.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

8.
Phosphatidylinositol 4-kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified from Saccharomyces cerevisiae by an improved procedure over that previously reported (Belunis, C.J., Bae-Lee, M., Kelley, M.J., and Carman, G.M. (1988) J. Biol. Chem. 263, 18897-18903) for the enzyme. The molecular mass of the enzyme was 45 kDa. The 35-kDa protein previously identified as PI 4-kinase was a proteolysis product of the 45-kDa protein. A detailed kinetic analysis of the purified enzyme was performed with Triton X-100/phosphatidylinositol-mixed micelles according to the "surface dilution" (Deems, R.A., Eaton, B.R., and Dennis, E.A. (1975) J. Biol. Chem. 250, 9013-9020) and "dual phospholipid" (Hendrickson, H.S., and Dennis, E.A. (1984) J. Biol. Chem. 259, 5734-5739) kinetic models. Phosphatidylinositol 4-kinase activity followed saturation kinetics with respect to the bulk and surface concentrations of phosphatidylinositol at concentrations of phosphatidylinositol below 0.1 mM. Above 0.1 mM activity was only dependent on the surface concentration of phosphatidylinositol. The enzyme more closely followed the dual phospholipid model where the enzyme associated with Triton X-100 micelles when phosphatidylinositol was present. The interfacial Michaelis constant (KmB) for phosphatidylinositol was 0.0036 mol fraction and the dissociation constant (KsA) for phosphatidylinositol in the micelle surface was 0.26 mM. The results of glycerol gradient centrifugation studies showed that the enzyme was physically associated with Triton X-100/phosphatidylinositol micelles.  相似文献   

9.
B R Ganong 《Biochemistry》1990,29(29):6904-6910
Phosphatidylinositol (PI) kinase activity was solubilized from rat liver microsomes and partially purified by chromatography on hydroxyapatite and Reactive Green 19-Superose. Examination of the ATP dependence using a mixed micellar assay gave a Km of 120 microM. The dependence of reaction rate on PI was more complicated. PI kinase bound a large amount of Triton X-100, and as expected for a micelle-associated enzyme utilizing a micelle-associated lipid substrate, the reaction rate was dependent on the micellar mole fraction, PI/(PI + Triton X-100), with a Km of 0.02 (unitless). Activity showed an additional dependence on bulk PI concentration at high micelle dilution. These results demonstrated two kinetically distinguishable steps leading to formation of a productive PI/enzyme(/ATP) complex. The rate of the first step, which probably represents exchange of PI from the bulk micellar pool into enzyme-containing micelles, depends on bulk PI concentration. The rate of the second step, association of PI with enzyme within a single micelle, depends on the micellar mole fraction of PI. Depression of the apparent Vmax at low ionic strength suggested that electrostatic repulsion between negatively charged PI/Triton X-100 mixed micelles inhibits PI exchange, consistent with a model in which intermicellar PI exchange depends on micellar collisions.  相似文献   

10.
A membrane-bound phosphatidylinositol 4-kinase (PtdIns kinase) has been purified to apparent homogeneity from human erythrocytes. Enzyme activity was solubilized from urea-KCl-stripped, inside-out membrane vesicles by 3% Triton X-100. Purification to apparent homogeneity was accomplished by cation-exchange chromatography on phosphocellulose, followed by heparin-acrylamide chromatography. This resulted in a nearly 3900-fold purification of PtdIns kinase activity to a specific activity of 44 nmol min-1 mg-1. The purified enzyme has an Mr of 59,000 on silver-stained SDS-PAGE; however, many preparations also contain 54 kDa and 50 kDa proteins which are related to the 59 kDa protein and have PtdIns kinase activity. Kinetic analysis of the PtdIns kinase indicate apparent Km values of 40 and 35 microM for phosphatidylinositol and ATP, respectively. The purified enzyme has been reconstituted into phospholipid liposomes and shown to phosphorylate phosphatidylinositol.  相似文献   

11.
牛小脑肌醇磷脂激酶PI(4)K高产率纯化与特征   总被引:1,自引:0,他引:1  
对牛小脑膜区肌醇磷脂激酶进行了11 500倍纯化,过程包括:TritonX-100抽提,硫酸铵沉淀,阳离子交换层析(phosphocellulose),亲和层析(Heparin Sepharose CL-6B)和阴离子交换层析(DEAE10,FPLC)等.纯化程度可达95%以上,对SDS-PAGE电泳结果进行扫描分析测其分子质量为56 ku.纯化的肌醇磷脂激酶的特异活性为450 nmol/mg·min, 动力学性质表现为ATP的表观Km值为7.9×10-7 mol/L,PI的表观Km值为6.6×10-7 mol/L. 腺嘌呤核苷是该酶的有效抑制剂,3.5×10-7 mol/L腺嘌呤核苷可使该酶活力降低约50%,而TritonX-100对该酶活力具有刺激作用,0.5% TritonX-100可使该酶表现为最高活力.  相似文献   

12.
D H Walker  N Dougherty  L J Pike 《Biochemistry》1988,27(17):6504-6511
A phosphatidylinositol kinase from A431 cells has been purified to near homogeneity. Purification was achieved through the use of a combination of chromatography steps including affinity elution of the enzyme from a heparin-agarose column with PI. Characterization of the [32P]PIP formed by the purified PI kinase indicates that the enzyme phosphorylates the inositol on the 4-position and is therefore a phosphatidylinositol 4-kinase. The enzyme has a subunit weight of 55,000 as estimated by SDS gel electrophoresis and appears to be active as a monomer. Studies of the hydrodynamic properties of the enzyme indicate that the PI kinase binds substantial amounts of Triton X-100 and is actually present in detergent-containing solutions as a complex with a molecular weight of approximately 120,000. The Km of the enzyme for PI is 16 microM and for ATP is 74 microM. The enzyme is inhibited by adenosine with an IC50 of 100 microM. These properties are essentially identical with those of the membrane-bound PI kinase in A431 cells which is stimulated by EGF. The data therefore suggest that the EGF-stimulated PI kinase is a 55,000-Da monomer.  相似文献   

13.
The enzyme phosphatidylinositol kinase was partially purified from murine livers. The purification scheme involved solubilization of proteins with Triton X-100 and deoxycholate, followed by gel filtration chromatography in ACA 44, affinity chromatography with Blue Sepharose and hydroxylapatite. The purification achieved from membranes was 490 fold. We found that partially purified phosphatidylinositol kinase was unable to catalyze the formation of phosphatidylinositol-4,5-bisphosphate.  相似文献   

14.
Purified membrane-associated phosphatidylinositol synthase (CDP diacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) from Saccharomyces cerevisiae was reconstituted into unilamellar phospholipid vesicles. Reconstitution of the enzyme was performed by removing detergent from an octylglucoside/phospholipid/Triton X-100/enzyme mixed micelle mixture by Sephadex G-50 superfine column chromatography. The average diameter of the vesicles was 40 nm and chymotrypsin treatment of intact vesicles indicated that over 90% of the reconstituted enzyme had its active site facing outward. The enzymological properties and reaction mechanism of reconstituted phosphatidylinositol synthase were determined in the absence of detergent. The reconstituted enzyme was used as a model system to study the regulation of activity. Phosphatidylinositol synthase was constitutive in wild type cells grown in the presence of water-soluble phospholipid precursors as determined by enzyme activity and immunoblotting. Reconstituted enzyme was not effected by water-soluble phospholipid precursors or nucleotides. Maximum activity was found when the enzyme was reconstituted into phosphatidylcholine: phosphatidylethanolamine: phosphatidylinositol: phosphatidylserine vesicles. Phosphatidylserine stimulated reconstituted activity, suggesting that the local phospholipid environment may regulate phosphatidylinositol synthase activity.  相似文献   

15.
Membrane-associated phosphatidate phosphatase (EC 3.1.3.4) was purified 9833-fold from the yeast Saccharomyces cerevisiae. The purification procedure included sodium cholate solubilization of total membranes followed by chromatography with DE53, Affi-Gel Blue, hydroxylapatite, Mono Q, and Superose 12. The procedure resulted in the isolation of a protein with a subunit molecular weight of 91,000 that was apparently homogeneous as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidate phosphatase activity was associated with the purified 91,000 subunit. The molecular weight of the native enzyme was estimated to be 93,000 by gel filtration chromatography with Superose 12. Maximum phosphatidate phosphatase activity was dependent on magnesium ions and Triton X-100 at pH 7. The Km value for phosphatidate was 50 microM, and the Vmax was 30 mumol/min/mg. The turnover number (molecular activity) for the enzyme was 2.7 x 10(3) min-1 at pH 7 and 30 degrees C. The activation energy for the reaction was 11.9 kcal/mol, and the enzyme was labile above 30 degrees C. Phosphatidate phosphatase activity was sensitive to thioreactive agents. Activity was inhibited by the phospholipid intermediate CDP-diacylglycerol and the neutral lipids diacylglycerol and triacylglycerol.  相似文献   

16.
Phosphatidylinositol (PI) kinase (EC 2.7.1.67), an integral membrane protein of chromaffin granule ghosts of the bovine adrenal medulla, was found to phosphorylate PI in the 4-position of the inositol ring. The PI kinase was purified about 200-fold from a membrane fraction containing chromaffin granules and microsomes by extraction with Triton X-114, followed by phase partition (clouding) and heparin Sepharose chromatography. The PI kinase preparation (specific activity of 5.1 nmol PIP/mg protein per min) was free from other enzymatic activities that metabolize polyphosphoinositides. Km values of 55 microM and 40 microM for ATP and PI, respectively, were estimated for the purified enzyme. Concentrations of Triton X-100 above the critical micellar concentration (0.01%, w/v) were necessary to support significant enzyme activity, which was optimal at about 0.1% (w/v). Its dependence of pH was similar to that of the membrane-bound enzyme, with a broad optimum around pH 7. Mes in the millimolar concentration range was found to strongly inhibit the activity of the purified PI kinase (I50 at about 4 mM). The enzyme was almost totally inhibited by low micromolar concentrations of free calcium, and stimulated by hydrophilic cations, e.g., Mg2+ and poly(L-lysine), with the same potencies as for the membrane-bound enzyme. The amphiphilic cation trifluoperazine, however, stimulated the activity of purified PI kinase less effectively than the membrane-bound enzyme (Husebye, E.S. and Flatmark, T. (1988) Biochem. Pharmacol. 37, 449-456), whereas the inhibitory effect of near millimolar concentrations of trifluoperazine was the same for the two forms of the enzyme. It is concluded that the membrane-bound PI kinase of this tissue is of type II according to the classification of Cantley and co-workers (Whitman et al. (1987) Biochem. J. 247, 165-174).  相似文献   

17.
On immunoprecipitation using a specific antiphosphotyrosine antibody, phosphatidylinositol kinase (EC 2.7.1.67) activity was separated from the protein-tyrosine kinase (EC 2.7.1.112) activity of the wheat germ agglutinin (WGA) -purified insulin receptor from human placenta. This clearly indicates that protein-tyrosine kinase and phosphatidylinositol kinase activity do not reside on the same polypeptide chain as previously has been suggested. Quantitatively, the fraction of phosphatidylinositol kinase that was bound to WGA sepharose and eluted together with the insulin receptor amounted to 2% of the Triton X-100 soluble phosphatidylinositol kinase. The apparent Km values of the bound and unbound phosphatidylinositol kinase with respect to PI and ATP were very similar (0.4 and 0.3 mmol/l and 8 and 7 mumol/l, respectively) suggesting that the WGA-bound phosphatidylinositol kinase is not a different enzyme, but rather represents a small portion of the bulk Triton X-100-soluble phosphatidylinositol kinase that is bound to the lectin tightly associated with the insulin receptor. The synthetic polymer (Glu80Tyr20)n, a model substrate of the insulin receptor tyrosine kinase, at 0.5 mmol/l, inhibited phosphatidylinositol kinase of WGA-purified insulin receptor by 70-90%. This inhibition was not overcome by increasing the concentrations of ATP or PI as one would expect if a functional interrelationship of the protein-tyrosine kinase and the phosphatidylinositol kinase would exist.  相似文献   

18.
Most of human platelet phosphatidylinositol (PI) kinase activity (approx. 80%) was associated with the membrane fraction and its majority was released by the extraction with Triton X-100 after KCl treatment. Two major activity peaks (mPIK-I and mPIK-III) were obtained by Mono Q column chromatography. They were distinct from each other with regard to Mr (76,000 and 80,000 as determined by gel-filtration chromatography), apparent Km values for ATP, effect of arachidonic acid and phosphatidylserine and detergent requirement. Triton X-100 inhibited the activity of mPIK-I but rather weakly enhanced the mPIK-III activity, and sodium cholate remarkably inhibited both mPIK-I and mPIK-III activities. Their products were identified to be phosphatidylinositol 4-phosphate. On the other hand, about 20% of PI kinase activity was recovered from the cytosolic fraction and two activity peaks (cPIK-I and cPIK-II) were resolved on Mono Q column chromatography. There were no significant differences in biochemical properties between cPIK-I and cPIK-II. Both of them had Mr approx. 550,000 as determined by gel-filtration chromatography and were activated by sodium cholate to a greater extent than by Triton X-100. The results suggest that the major PI kinases (mPIK-I and mPIK-III) are PI 4-kinase and mPIK-I is distinct from PI 4-kinases in other sources especially with regard to the effect of Triton X-100.  相似文献   

19.
Membrane-associated phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) was purified from the microsomal fraction of Saccharomyces cerevisiae strains S288C and VAL2C(YEpCHO1). VAL2C(YEpCHO1) contains a hybrid plasmid bearing the structural gene for phosphatidylserine synthase and overproduces the enzyme 6-7 fold (Letts, V. A., Klig, L. S., Bae-Lee, M., Carman, G. M., and Henry, S. A. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7279-7283) compared to wild-type S288C. The purification procedure included Triton X-100 extraction of the microsomal membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and DE-53 chromatography. The procedure yielded a preparation from each strain containing a major peptide band (Mr = 23,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidylserine synthase was dependent on manganese and Triton X-100 for maximum activity at pH 8.0. The apparent Km values for serine and CDP-diacylglycerol were 0.58 mM and 60 microM, respectively. Thioreactive agents inhibited enzyme activity. The enzyme was thermally labile above 40 degrees C. Results of isotopic exchange reactions between substrates and products suggest that the enzyme catalyzes a sequential Bi Bi reaction.  相似文献   

20.
The membrane-associated phospholipid biosynthetic enzyme cytidine 5'-diphospho-1,2-diacyl-sn-glycerol:L-serine O-phosphatidyltransferase (phosphatidylserine synthase; EC 2.7.8.8) was partially purified 337-fold from a cell-free extract of the gram-positive pathogenic anaerobe Clostridium perfringens (ATCC 3624). The purification procedure included extraction from the cell envelope with the nonionic detergent Triton X-100, followed by affinity chromatography on cytidine 5'-diphosphate-diacylglycerol-Sepharose. When the partially purified enzyme was subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, two major bands were evident with apparent minimum molecular weights of 39,000 and 31,000. Activity of phosphatidylserine synthase was dependent on the addition of manganese ions (3 mM) and Triton X-100 (2.7 mM) for maximum activity. The rate of catalysis was maximal at 40 degrees C (with rapid thermal inactivation above this temperature), and the pH optimum was 8.5. The apparent Km values for cytidine 5'-diphosphate-diacylglycerol and L-serine were 0.24 and 0.26 mM, respectively. The synthetic (forward) reaction was favored, as indicated by an equilibrium constant of 82, and the energy of activation was found to be 18 kcal/mol (75,362 J/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号