首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamics of the first cell cycle in parthenogenetic mouse embryos derived from ethanol-activated eggs was studied using 3H-thymidine. DNA synthesis starts within 5 h and is terminated within 10 h after activation: it lasts ca. 6 h. Changes in the intensity of 3H-thymidine incorporation and in the distribution of radioactive label between haploid and diploid parthenogens were observed. 3H-thymidine was shown to incorporate into pronucleoli of diploid parthenogens and late-labeled heterochromatin blocks were bound in both diploid and haploid pronuclei. The structure of the first cell cycle in parthenogenetic and normal embryos is discussed.  相似文献   

2.
Control of first cleavage in single-cell reconstituted mouse embryos   总被引:3,自引:0,他引:3  
Karyoplasts derived from mouse embryos at the initial and final stages of the first or second mitotic interphase were fused to early and late enucleated 1-cell embryos. The time of cleavage of reconstituted and control embryos was recorded at 1-h or 8-h intervals after manipulation. This enabled assessment of nuclear and cytoplasmic control over the mitotic apparatus of the 1-cell embryo. Early nuclei from 1- or 2-cell embryos fused to late enucleated embryos delayed cleavage but for only a few hours. However, late nuclei fused to early enucleated embryos were unable to advance the cytoplasmic timing of the next cleavage division. Furthermore, these reconstituted embryos stayed in interphase longer than did controls and many embryos with nuclei derived from late 2-cell embryos failed to cleave. These findings suggest that, allowing for a short period, early nuclei can synchronize with late cytoplasm with no major damage to the cleavage apparatus. It is proposed that this period is required for the completion of DNA synthesis by the early nuclei. However, late nuclei cannot induce mitosis before the expected cytoplasmic time, and, with 2-cell karyoplasts, this interaction causes many embryos to 'block' in interphase, without cleaving, suggesting incompatible nucleo-cytoplasmic interactions between late 2-cell karyoplast and early 1-cell stage cytoplasm.  相似文献   

3.
Homozygous mouse embryos produced by microsurgery   总被引:5,自引:0,他引:5  
Homozygous mouse blastocysts have been produced following microsurgical removal of one pronucleus from the fertilized egg, diploidization in cytochalasin B, and culture in vitro. This combination of techniques should greatly shorten the time required to obtain homozygous strains of mice.  相似文献   

4.
When artificially activated mouse eggs are inseminated in the middle of the first cell cycle, sperm nuclei remain condensed until the first mitosis. During mitosis of the first cleavage division sperm nuclei decondense, subsequently recondense and are passively displaced to the daughter blastomeres. In the 2-cell embryos sperm nuclei form interphase nuclei which are able to replicate DNA and to condense into discrete chromosomes during the following mitotic division. These observations suggest that the mitotic cytoplasm of 1-cell embryos creates similar conditions for the transformation of sperm nuclei into male pronuclei as the cytoplasm of metaphase II oocytes.  相似文献   

5.
Summary Mouse embryos at the two cell stage derived from C57BL/6 × C3H/Aa F1-females heterozygous at the X-linked phosphoglycerate kinase locus (Pgk-1) were cultured continuously in the presence of cytochalasin B or D. Further cleavage of the two cell embryos was thus prevented and the embryos became polyploid during culture. The onset of expression of the maternally inherited Pgk-1 gene and of the paternally inherited glucosephosphate isomerase (Gpi-1) gene was determined in these polyploid embryos by cellulose acetate gel electrophoresis of single embryos. In contrast to euploid preimplantation embryos developing normally in utero or in culture without cytochalasins, expression of maternal Pgk-1 was never observed at days 4 and 5 of gestation in polyploid two cell embryos, showing that the Pgk-1 allele on the maternally inherited X chromosome is not activated independently of cytokinesis and morphogenesis. Expression of paternally derived Gpi-1, however, occurred in cleavage blocked embryos von day 5 of development. This may indicate that the activation of two genes which are both expressed during preimplantation development and which both code for glycolytic enzymes, is initiated by different signals.  相似文献   

6.
The developmental competence of bovine oocytes meiotically arrested with specific cdk2 inhibitor roscovitine was studied. After removal of the 32-h block with roscovitine, 82.7 +/- 5.4% reached the metaphase II stage at the end of maturation, which was lower than in controls (96.3 +/- 1.3%, p < 0.001). The process of polar body formation started at 11 h of maturation in the roscovitine group, that is 4 h earlier than in controls and its kinetics was quite similar to controls up to 16 h of maturation, when nearly 70% of oocytes extruded their polar bodies. The rate of blastocyst formation of roscovitine oocytes and their cell number after IVF, parthenogenetic activation, and nuclear transfer (NT) were equal to controls, which demonstrates the possibility of artificially maintaining bovine oocytes in the GV stage for 32 h without altering their preimplantation developmental competence. This approach can be very useful for the management of an NT program where enucleated oocytes are required at specific times or locations.  相似文献   

7.
目的探讨小鼠电激活孤雌胚胎的早期体内、外发育能力。方法 利用不同电脉冲参数和激活液对小鼠卵母细胞进行活化,观察激活后的小鼠孤雌胚体外发育状况和移植后的发育能力。结果非电解质激活液优于电解质液,脉冲强度、脉冲宽度和脉冲次数3个参数各自处于某一范围内时,他们之间存在某种相关性,降低其中1个参数可通过升高另外2个参数得到补偿,经筛选较适宜的电脉冲参数为:1.0 kV/cm、40μs、2 p,或者1.5kV/cm、30/μs、2 p,分别为74.65%和71.19%,体外囊胚发育率分别为43.40%和47.62%。电激活孤雌胚体外发育时序比正常胚胎慢,但囊胚细胞数与对照组差异不显著。它们经胚胎移植后,其中的一部分能够着床,但着床率仅为3.6%,极显著低于对照组(67%,P〈0.01)。结论电刺激能够较好地模拟正常受精过程激活小鼠卵母细胞,但激活后的多数小鼠孤雌胚胎着床能力较低,不能够顺利着床。  相似文献   

8.
9.
Summary Blastomeres isolated from two-cell mouse embryos were cultured until they started to cleave. When the cleavage furrow developed they were subjected to cytochalasin B (CB) and were studied with the electron microscope. The initial response to CB is that the furrow is more folded and microvillous than in the control. Later the blastomeres round up. The protrusions covered with abundant long microvilli are found scattered within their equatorial surface. Extraction with glycerol solution before fixation permits visualization of condensations of felt-like filamentous material in contact with the cleavage furrow during the initial response to CB and in the protrusions of rounded cells. We consider clumping of filaments in surface protrusions to be a specific response to CB treatment of the contractile ring.Some of the previous papers by this author have been published under the name Opas  相似文献   

10.
During meiosis, the cytostatic factor (CSF) activity stabilizes the activity of the M-phase promoting factor (MPF) in metaphase II arrested vertebrate oocytes. Upon oocyte activation, the inactivation of both MPF and CSF enables the entry into the first embryonic mitotic cell cycle. Using a biological assay based on cell-fusion (hybrid between a parthenogenetically activated egg entering the first mitotic division and an activated oocyte), we observed that in activated mouse oocytes a first drop in CSF activity is detectable as early as 20 min post-activation. This suggests that CSF is inactivated upon MPF inactivation. However, CSF activity increases again to reach a maximum 60 min post-activation and gradually disappears during the following 40 min. Thus, in activated mouse oocytes (undergoing the transition to interphase) CSF activity fluctuates before definitive inactivation. We found that hybrids arrested in M-phase, thus containing CSF activity after oocyte activation, have activated forms of MAP kinases while hybrids in interphase have inactive forms of these enzymes. We postulate that CSF inactivation in mouse oocytes proceeds in two steps. The initial inactivation of CSF, required for MPF inactivation, is transient and does not require MAP kinase inactivation. The final inactivation of CSF, required for normal embryonic cell cycle progression, is dependent upon the inactivation of MAP kinases.  相似文献   

11.
This study describes the effects of 5-azacytidine (5-azaC) on the development of diploid parthenogenetic embryos (PE) of CBA, C57BL/6 and (CBA × C57BL/6)F1 mice in vitro at the 1-cell or the blastocyst stage or in vivo after implantation. Our findings indicate that genomic imprinting is modulated by genetic background. Non-fertilized C57BL/6 eggs form diploid parthenogenetic blastocysts at a much higher frequency than CBA eggs. Eggs from F1 hybrid females form parthenogenetic blastocysts at an approximately intermediate level between these inbred strains of mice. C57BL/6 PE do not develop to the somite stages. In contrast, CBA PE and F1 PE develop to various somite stages. Following administration of 5–azaC at 1.0 μmol/L in vitro at the 1- -cell stage, the number of implantations of C57BL/6 PE transferred to pseudopregnant females increased. In contrast, the number of implantations and somite F1 PE did not significantly change following exposure to 5–azaC. However, administration of 5-azaC at the 1-cell stage stimulates development of somite F1 PE. Administration of 5-azaC at 0.2 and 1.0 μmol/L in vitro at the blastocyst stage did not change the number of implantations of C57BL/6 PE. However, the number of implantations and somite CBA PE decreased. After injection of 5azaC at 0.24mg/kg in vivo at day 8 of gestation, some F1 PE developed to 26–35 somites compared with a maximum of 25 somites in controls. The different effects of 5-azaC on the development of PE depend upon the mouse strain used and the stage of development.  相似文献   

12.
The majority of somatic cell nuclear transfer (SCNT) clones dies in the peri- or postimplantation period. Improvement of the full-term healthy pregnancy rates is a key issue for the economical viability and animal welfare profile of SCNT technology. In this study the effects of cotransfer of parthenogenetic or fertilized embryos on the pregnancy and implantation of SCNT mouse embryos have been investigated. SCNT embryos were produced by transferring cumulus cell nuclei into enucleated B6D2F1 mouse oocytes, whereas parthenogenetically activated (PA) and fertilized embryos were derived from ICR mice by artificial activation with strontium and in vivo fertilization, respectively. SCNT embryos were inferior in their developmental capacity to blastocyst compared to either PA or fertilized embryos. SCNT embryos were transferred alone (SCNT), or cotransferred with two to three PA (SCNT + PA) or fertilized (SCNT + Fert) embryos into the oviducts of an ICR recipient. Both pregnancy and implantation rates originating from clones in the SCNT + PA group were significantly higher than those of SCNT group (p < 0.05). The weight of placentas of clones derived from SCNT, SCNT + PA, or SCNT + Fert was in all cases significantly higher than that of fertilized controls (p < 0.001). Most of the clones derived from SCNT embryos cotransferred with PA or fertilized embryos survived to adulthood and were fertile and healthy according to histopathological observations. Our results demonstrate in mouse that cotransfer of PA embryos improves the pregnancy and implantation of SCNT embryos without compromising the overall health of the resulting clones.  相似文献   

13.
Despite the fact that a variety of experimental techniques have been devised over the years to induce tetraploid mammalian embryonic development, success rates to date have been limited. Apart from the early study by Snow, who obtained development to term of a limited number of cytochalasin B-induced tetraploid mouse embryos, no other researchers have achieved development of tetraploid embryos beyond the early postimplantation period. We now report advanced postimplantation development of tetraploid mouse embryos following electrofusion of blastomeres at the 2-cell stage, and subsequent transfer of these 1-cell 'fused' embryos to appropriate recipients. Cytogenetic analysis of the extraembryonic membranes of all of the postimplantation embryos encountered in the present study has provided an unequivocal means of confirming their tetraploid chromosome constitution. A preliminary morphological and histological analysis of the tetraploid embryos obtained by this technique has revealed that characteristic craniofacial abnormalities particularly involving the forebrain and eyes were consistently observed, and these features were often associated with abnormalities of the vertebral axis and heart. The most advanced viable embryo in this series was recovered on the 15th day of gestation, and its morphological features suggest that it was developmentally equivalent to a normal embryo of about 13.5-14 days p.c.  相似文献   

14.
Diploid mouse embryos containing only maternal DNA (parthenotes) fail, in part, because the inner cell mass does not induce the trophoblast to grow. In this study, we asked whether any of the defects in parthenotes may arise from alterations in trophoblast function. We examined the expression of genes important for normal trophoblast function and found several trophoblast genes that were expressed at normal levels in the primary trophoblast cells of parthenotes: E-cadherin, a cell adhesion molecule, was expressed normally in both the ICM and trophectoderm of parthenogenetic blastocysts and blastocyst outgrowths; the gene for Hxt, a basic helix-loop-helix factor that regulates trophoblast development, was expressed in both zygotic and parthenogenetic giant cells; placental lactogen-1, a hormone that is normally secreted by trophoblast giant cells, was expressed in most of both parthenogenetic and normal trophoblast cells; and the 92 kDa matrix metalloproteinase, gelatinase B, also known as MMP-9, was secreted at equivalent levels by both zygotic and parthenogenetic blastocyst outgrowths. However, once the outgrowths had developed, a subpopulation of trophoblast cells in parthenogenetic embryos had decreased DNA replication and significantly fewer nucleoli per nucleus than did zygotic embryos. Moreover, the parthenogenetic trophoblast cells growing out from blastocysts had a decreased viability in culture. These data suggest that, although parthenogenetic embryos are able to initiate primary trophoblast differentiation, the stability and continued differentiation of trophoblast giant cells may be abnormal. Our data support the hypothesis that the deficiency of secondary trophoblast giant cells may contribute to the decline of parthenogenetic embryos and suggest that the factors controlling this subset of trophoblast are distinct from those for primary trophoblast. Dev Genet 20:1–10, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
This study assessed the presence of cleaved caspase 3 (CC3) during the in vitro development of swine embryos produced by parthenogenetic activation (PA). Embryos with high and low capacity to develop into blastocysts and the exposure to a caspase inhibitor (z‐DEVD‐fmk) were used to investigate the effect of CC3 on embryo development. The blastocyst rate (64.3% vs. 16.4%) and the average number of nuclei per blastocyst (39.7 vs. 19.8) were significantly higher (P < 0.05) in early‐ (before 24 hr) compared to late‐ (between 24 and 48 hr) cleaving embryos after PA. CC3 was mainly detected in the cytoplasm of Day‐2 and ‐4 embryos, but was primarily localized in the nucleus of Day‐5 and ‐6 embryos. The fluorescence signal for CC3 relative to negative controls was significantly higher (P < 0.05) in early‐ (2.42‐fold) compared to late‐cleaving (1.39‐fold) embryos at Day 2 of culture. Treatment with z‐DEVD‐fmk during the first 24 or 48 hr of the culture period resulted in more embryos developing into blastocysts compared to the control group (55.8% and 55.1% vs. 37%, respectively; P < 0.05). This study confirmed the presence of CC3 in PA embryos from the two‐cell to the blastocyst stage, and revealed that CC3 cellular‐localization changed during embryo development. CC3 was shown to be more abundant in early‐cleaving and more developmentally competent embryos compared to late‐cleaving and less developmentally competent embryos. The inhibition of caspase activity at the beginning, but not at the end, of the culture period affected development of PA embryos. Mol. Reprod. Dev. 78:673–683, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
In experiments in which diploid parthenogenetic mouse embryos cultured entirely in vitro from the one-cell stage to the blastocyst were transferred to suitable recipients and maintained in "delay" for about 3 days before implanting, about 25-40% subsequently developed to somite-containing stages. In all, over 30 such embryos were examined. Most were morphologically normal, and equivalent to fertilized development observed on the 9th-11th days of pregnancy. A few embryos, however, had neural tube abnormalities, but of greatest interest were two sets of monoamniotic monozygotic twins. It is unclear whether the twins in some way resulted from the parthenogenetic condition, or from the "delayed" state. The present examples are discussed in the context of previous observations of monozygotic twinning in the mouse and man.  相似文献   

19.
A protein isolated from serum is required in the cell suspension for the chemotactic response of normal mouse peritoneal macrophages to complement-derived C5a. Macrophage stimulating protein (MSP) has a molecular weight of 100000 and an isoelectric point of 7.0. It is resistant to changes in pH over a range of 1.3–11, is heat labile especially after partial purification and does not survive proteolytic enzyme attack. Binding to ConA Sepharose suggests that it contains a carbohydrate moiety. Its concentration in normal serum is very low and it is detectable only by virtue of a sensitive bioassay. An upper limit has been estimated at 75 ng/ml; the actual concentration may be considerably lower.  相似文献   

20.
The effects of cytoskeleton inhibitors on the invasion of Tyzzer's organism, an obligate intracellular bacterium, into cultured mouse hepatocytes were examined by double immunofluorescence observation and plaque assay. The two techniques gave comparable results. Invasion of bacteria was significantly enhanced by cytochalasin D, a microfilament disrupting drug, and markedly suppressed by vinblastine, a microtubule inhibitor. Another microtubule inhibitor, colchicine, did not show any substantial effect. However, the cytoskeletal system of cultured mouse hepatocytes was sensitive to these three drugs, as judged by inhibition of FITC-dextran uptake. These results suggest that Tyzzer's organisms invade host cells by a unique mechanism that is suppressed by the normal functions of host cell microfilaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号