首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research into ion-exchange properties of cell walls isolated from thallus of red seaweed Phyllophora crispa was carried out. Ion-exchange capacity and the swelling coefficient of the red alga cell walls were estimated at various pH values (from 2 to 12) and at constant ionic strength of a solution (10 mM). It was established that behavior of cell walls as ion-exchangers is caused by the presence in their matrix of two types of cation-exchange groups and amino groups. The amount of the functional group of each type was estimated, and the corresponding values of pK(a) were calculated. It can be assumed that ionogenic groups with pK(a) -5 are carboxyl groups of uronic acids, and ionogenic groups with pK(a) -7.5 are carboxyl groups of the proteins. Intervals of pH in which cation-exchange groups are ionized and can take part in exchange reactions with cations in the environment are defined. It was found that protein was a major component of cell wall polymeric matrix because its content was 36%.  相似文献   

2.
Acid–base properties of cell walls isolated from various root tissues of 7-day-old lupine seedlings and 14-day-old lupine plants grown in various media were studied. The ion-exchange capacity of root cell walls was estimated at various pH values (from 2 to 12) and constant ionic strength (10 mM). The parameters determining the qualitative and quantitative composition of cell wall ionogenic groups along the root length and in its radial direction were estimated using Gregor's model. This model fits the experimental data reasonably well. Four types of ionogenic groups were found in the cell walls: an amino group (pK a 3), two types of carboxylic groups (pK a 5 and 7.3, the first being the carboxylic group of galacturonic acid), and a phenolic group (pK a 10). The number of functional groups of each type was estimated, and the corresponding ionization constant values were calculated. It is shown that the chemical composition of the ionogenic groups was constant along the root length as well as in its radial direction and did not depend on either physiological state or root nutrition, while the number of different groups varied. The content of carboxylic groups of -D-polygalacturonic acid in the root cell walls of 14-day-old plants was shown to depend on the distance from the root tip, being maximal in the zone of lateral roots. The number of these groups was 10- and 2-fold less in the central cylinder compared to that of cortex for 14-day-old plants and 7-day-old seedlings, respectively.  相似文献   

3.
Ion-exchange properties of polymeric matrices were compared for cell wall preparations isolated from roots and shoots of two cultivars of Cicer arietinum L. (cvs. Bivanij and ILC 482) with different sensitivities to salinity. Irrespective of growth conditions, the cell walls contained four types of ionogenic groups: amino groups, carboxyl groups of uronic and hydroxycinnamic acids, and phenolic hydroxyl groups. Regardless of the salt concentration in the medium, the cells walls of different chickpea cultivars and from different organs of the same plant were similar in qualitative composition of ionogenic groups, although quantities of ionogenic groups per unit dry wt of cell walls varied depending on external and internal factors. Irrespective of the external medium salinity, the cation-exchange capacity of cell walls, expressed per unit dry wt, decreased in a sequence: stem > root ∼ bottom leaves > upper leaves. The volume of chickpea cell walls was found to vary depending on ionic composition and pH of the incubation medium. The results were analyzed in the context of cell wall involvement in responses of C. arietinum to elevated salinity.  相似文献   

4.
Meychik  N.R.  Yermakov  I.P. 《Plant and Soil》1999,217(1-2):257-264
Acid-base properties of wheat, lupin, pea root cell walls were investigated. The roots of etiolated and green plants of different age were analysed by the potentiometric method. The ion exchange capacity of root cell walls (Si) was estimated at various pH values (pHi 2 to pHi 12) and constant ion strength of the solution (10 mM). To analyse polysigmoid curves pHi =f (Si), Gregor's equation was used. It was shown that Gregor's model fits fairly well the experimental data. The total quantities of cation-exchange (St cat) and anion-exchange (St an) groups were determined in the root cell walls. It was shown that the quantity of anion exchange groups is varied through a small range (60–185 μmol/g dry wt.) in plant species tested, and that the St cat differs widely from 550 to 1300 μmol/g dry wt. For leguininous plants the quantity of acidic groups (fixed anions) is nearly twice as large as that for cereals. It was found that in seedlings as well as in plants, there are 3 cation-exchange groups and one anion-exchange group in root cell walls. The quantity of functional groups of each type (Sj) was estimated, and the corresponding values of nj and pKa j were calculated. It can be assumed that the groups with the pKa 1 ≈ 3.2 are amine groups, the ones with PKa 2 ≈ 5 are groups of galacturonic acid, the ones with pKa ≈ 7.5 are the carboxyl groups of the second species, and the ones with pKa 4 ≈ 40 are the phenolic groups. The values of dissociation constants (pKa j) and Sj indicate that the root cell walls of wheat, lupin and pea are identical in qualitative structure of ionogenic groups but vary in the quantity of each ionogenic group. It was demonstrated that the summarized quantity of carboxyl groups (S2 + S3) should be connected directly with the pH gradient in the extracellar space at the membrane surface. The gradient arises from ion-exchange reactions between cations of an outer medium and protons of the ionized carboxyl groups of the cell walls. The results suggest that, St cat and St an allow the quantitative estimation of ion exchange properties of the cell walls. The resulting parameters (Sj, pKa j and nj) allow prediction of changes in an ionic composition of a medium that bathes the cell membrane, during the first step of mineral nutrition uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Ion-exchange properties of cell walls were investigated in reindeer lichen Cladonia rangiferina (L.) F. H. Wigg. In order to isolate cell walls, we used living parts of podetia as well as young parts (four upper internodes of podetia) and old parts (from the 4th to the 8th internode). We studied functional dependences of cell wall ion-exchange capacity on pH in the range from 2 to 12 and constant ionic strength of solution equal to 10 mM. It was found that three-dimensional structure of C. rangiferina cell walls comprised three types of ionogenic groups, which determine ion-exchange properties of the cell walls. They are amino groups with pKa of about 3, carboxyl groups with pKa of about 7, and phenolic OH-groups with pKa of about 10. The content of groups of each type and their ionization constants were determined, and it was shown that, in the cell walls of young parts, the content of amino groups and carboxylic groups was greater than in old parts of podetia (by 1.5 and 2.0 times, respectively). It was found that with age the content of nitrogen and the proportion of deacetylated amino groups in the cell walls changed from 34% (young parts of podetia) to 40% (old parts of podetia). It was shown that in C. rangiferina N-acetyl glucosamine and glucosamine are not the main monomers of cell wall polymers because both in thalli and in the cell walls isolated therefrom the content of total nitrogen was less than 1%.  相似文献   

6.
Ion exchange properties of plant root cell walls   总被引:1,自引:0,他引:1  
Meychik  N.R.  Yermakov  I.P. 《Plant and Soil》2001,234(2):181-193
Acid-base properties and the swelling capacity of wheat, lupin and pea root cell walls were investigated. Roots of seedlings and green plants of different age were analysed by the potentiometric method. The ion exchange capacity (S i) and the swelling coefficient (K cw) of root cell walls were estimated at various pH values (from 2 to 12) and at different ionic strength (between 0.3 and 1000 mM). To analyse the polysigmoid titration curves pHi = f (S i), the Gregor's equation was employed. It was shown that the Gregor's model fits well the experimental data. The total number of the cation exchange (S t cat) and the anion exchange (S t an) groups were determined in the root cell walls. The number of the functional group of each type (S j) was estimated, and the corresponding values of pK a j were calculated. It was shown that for all types of cation exchangeable groups arranged in the cell wall structure the acid properties are enhanced by the increasing concentration of electrolyte. For each ionogenic group the coefficients of Helfferich's equation [pK a j = f (C K+)] were determined. It was found that the swelling of root cell walls changes with pH, C K+ and strongly depends on plant species. Within the experimental pH and C K+ range the swelling coefficient changes as follows: lupin > pea > wheat. The obtained results show that for the plant species under investigation the differences in the swelling coefficients originate from (a) the differences in the cross-linking degrees of polymeric chains arranged in the cell wall structure, (b) the differences in the number of carboxyl groups and (c) the differences in the total number of functional groups. Based on the estimated swelling coefficients in water it could be inferred that for wheat the cross-linking degree of the polymeric chains in the root cell walls is higher than those for lupin or pea. It has been emphasized that the calculated parameters (S j, pK a j, K cw), the equation {pK a j = f (CK+)} and the dependencies {K cw = f (CK+, pH)} allow to estimate quantitatively the changes in the ion exchange capacity of the root cell walls in response to the changes in an ionic composition of an outer solution. The results of these estimations allow to suggest that (a) the root apoplast is a compartment where the accumulation of cations takes place during the first stage of cation uptake from an outer medium, and (b) the accumulation degree is defined by pH and ionic composition of an outer solution. On the basis of the literature review and the results of the present experimental study it was proposed that the changes in the cell wall swelling in response to variances of environmental or experimental conditions could lead to a change of the water flow through a root apoplast. It has been supported that there is direct relationship between the swelling of root cell walls and the water flow within the plant root apoplast.  相似文献   

7.
Ion-exchange capacity of the cell walls isolated from suspension-cultured Panax japonicus, Polyscias filicifolia and Dioscorea deltoidea cells was analyzed at pH 2.8–12 and constant ionic strength (100 mM). The cell walls of all cultures contain three types of ion-exchange groups: primary amino groups (pK a < 3), carboxyl groups of polygalacturonic acid (pK a 3.71), and carboxyl groups of hydroxycinnamic acids (pK a 7.62). Amount of primary amino groups ranges from 500 (D. deltoidea) to 710 (P. japonicus) µmol/g cell wall dry weight, carboxyl groups with pK a 3.71—from 570 (D. deltoidea) to 670 (P. filicifolia), carboxyl groups with pK a 7.62—from 270 (P. filicifolia) to 370 (P. japonicus) µmol/g cell wall dry weight. The comparison of the data obtained by elemental and functional analyses demonstrated that the cell walls of all cultures are characterized by high content of pectins (~40% by weight) and structural proteins (~17–30% by weight), but do not contain phenolic OH–groups, which presumably signifies the absence of lignin in them.  相似文献   

8.
The composition of ionogenic groups and ion-exchange capacity were studied in the polymeric matrix of cell walls isolated from the pollen grain and tissues of vegetative organs (leaves and stems) of Lilium longiflorum Thunb. The ion-exchange capacity was evaluated at different pH values and ionic strength of 100 mM. In the two-layered pollen wall and the somatic cell walls four types of ionogenic groups were found: amino groups, two carboxyl groups (represented by residues of uronic and hydroxycinnamic acids), and phenolic OH-groups. The groups of all four types are present in the intine, whereas the exine contains one type of anion-exchange and two types of cation-exchange groups. The contents of each type group and their ionization constants were determined. The qualitative and quantitative compositions of structural polymers of the pollen intine and somatic cell walls are significantly different. It is suggested that hydroxycinnamic acids should be involved in cross-linking of polysaccharide chains in both the intine and somatic cell primary walls, and such cross-links play a crucial role in the structural organization and integrity of the pollen grain wall.  相似文献   

9.
The ion-exchange properties of cell wall polymers isolated from the roots of wheat (Triticum aestivum L.) plants grown on either nitrate-free (N-deficient) or nitrate-containing (+N) hydroponic nutrient medium have been investigated. Irrespective of the nitrogen nutrition regimen, the studied cell walls contained four types of ion-exchange groups: primary amino groups of structural proteins (pKa < 3), carboxyl groups of polygalacturonic acid in pectin (pK a ~4.7), carboxyl groups of hydroxycinnamic acids (pK a ~7.3), and phenolic OH-groups of lignin (pKa ~10.2). The quantitative ratio between these types of ion-exchange groups, the mass fraction of cell walls in the dry weight of roots, and the swelling coefficient of cell walls depended on the nitrate presence in the growing medium. Compared to the +N variant, the N-deficient variant was characterized by a 2.4 times higher content of phenolic OH-groups in cell walls and 1.24 times higher mass fraction of cell walls; at the same time, the swelling coefficient for this variant was lower by 10%. The obtained data indicate that nitrogen deficiency results in a formation of thicker root cell walls with a higher degree of polymer cross-linking that may be caused by the increased lignin content.  相似文献   

10.
Changes in the composition of ionogenic groups of the polymeric matrix of the cell walls of lily (Lilium longiflorum Thunb.) pollen grains were studied during its activation at the early stages of pollen germination. In the cell walls isolated from nonactivated and activated pollen grains, four types of ionogenic groups were identified: amino groups, carboxylic groups of uronic acids, phenolic OH-groups. and groups with pKa 7–8. During the early stages of germination, ionization constants of each type groups remained unchanged, but the quantitative composition of ionogenic groups in the intine changed. In this matrix, a decrease in the content of phenolic groups and demethylated carboxylic groups of uronic acids was detected. It is supposed that, at early stages of germination, the intine loses some part of acid pectins and some phenolic compounds.  相似文献   

11.
Protonation of an aminoglycoside antibiotic kanamycin A sulfate was studied by potentiometric titrations at variable ionic strength, sulfate concentration and temperature. From these results the association constants of differently protonated forms of kanamycin A with sulfate and enthalpy changes for protonation of each amino group were determined. The protonation of all amino groups of kanamycin A is exothermic, but the protonation enthalpy does not correlate with basicity as in a case of simple polyamines. The sites of stepwise protonation of kanamycin A have been assigned by analysis of 1H-13C-HSQC spectra at variable pH in D2O. Plots of chemical shifts for each H and C atom of kanamycin A vs. pH were fitted to the theoretical equation relating them to pKa values of ionogenic groups and it was observed that changes in chemical shifts of all atoms in ring C were controlled by ionization of a single amino group with pKa 7.98, in ring B by ionization of two amino groups with pKa 6.61 and 8.54, but in ring A all atoms felt ionization of one group with pKa 9.19 and some atoms felt ionization of a second group with pKa 6.51, which therefore should belong to amino group at C3 in ring B positioned closer to the ring A while higher pKa 8.54 can be assigned to the group at C1. This resolves the previously existed uncertainty in assignment of protonation sites in rings B and C.  相似文献   

12.
The influence of pH within the range 6.9–10.0 on the kinetic parameters of Micrococcus lysodeicticus cell lysis catalyzed by hen egg lysozyme has been studied at 25°C and 37°C. The effective pK b values have been calculated for the group determining lysozyme catalytic activity. The ΔH ion value indicates that this group is a carboxyl, although its pK (9.15 at 25°C) is far beyond the range characteristic of carboxylic groups. The cause of this abnormal pK b value is supposed to be the strong negative charge of the bacterial cell wall. As a result, the enzyme, which catalyzes the hydrolysis of N-acetylglucosamine-N-acetylmuramic acid copolymer, operates in a highly acidic microenvironment.  相似文献   

13.
The protein dipole moment is a low-resolution parameter that characterizes the second-order charge organization of a biomolecule. Theoretical approaches to calculate protein dipole moments rely on pK a values, which are either computed individually for each ionizable residue or obtained from model compounds. The influence of pK a shifts are evaluated first by comparing calculated and measured dipole moments of β-lactoglobulin. Second, calculations are made on a dataset of 66 proteins from the Protein Data Bank, and average differences are determined between dipole moments calculated with model pK as, pK as derived using a Poisson–Boltzmann approach, and empirically-calculated pK as. Dipole moment predictions that neglect pK a shifts are consistently larger than predictions in which they are included. The importance of pK a shifts are observed to vary with protein size, internal permittivity, and solution pH.  相似文献   

14.
The active site of isomalto-dextranase from Arthrobacter globiformis was investigated by kinetic and chemical-modification methods. The ionization constants, pKe1 and pKe2, of the essential ionizable groups 1 and 2 of the free enzyme were 3.3 and 6.3 for dextran T2000 and 3.5 and 6.1 for isomaltotriose. The pKel and pKe2 both shifted to higher pH when the dielectric constant of the reaction mixture decreased. The heats of ionization for groups 1 and 2 were 0 kcal/mol or less with both substrates. These kinetic results suggested that the ionizable groups essential for the enzyme activity were carboxyl and carboxylate. Modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, modifying carboxyl residues specifically, resulted in inactivation of the enzyme, and isomaltotriose protected the enzyme against such inactivation. These findings also indicated that the carboxyl groups were essential to the enzyme activity.  相似文献   

15.
Dietary fibers, alginate and defatted corn fiber, sorbed food mutagens, Trp-P-1 and Glu-P-1, which are heterocyclic amines formed in the cooking process. The sorption behavior of the heterocyclic amines to defatted corn fiber and alginates was analyzed under pH-controlled conditions. Glu-P-1 and alginic acid had pKa values of 4.2 and 3.6, respectively, whereas Trp-P-1, which showed alkaline in solution, possessed two pKa values of 4.8 and 7.7. Defatted corn fiber, which was mainly composed of cellulose and hemicellulose, did not show a significant pKa value. The amount of sorbed Trp-P-1 to the alginates increased as the pH value of the buffer was elevated, and was much more than that sorbed to defatted corn fiber at each pH condition. These results suggest that the alginates held the amino group of Trp-P-1 or Glu-P-1 on their carboxyl group as a cation exchanger.  相似文献   

16.
Ion-exchange characteristics of the cell walls isolated from different zones of the foliose lichen Peltigera aphthosa (L.) Willd were determined. Four types of ionogenic groups were revealed in the thallus cell walls of P. aphthosa, namely amino groups, carboxylic groups of uronic acids, carboxylic groups of phenolic acids, and phenolic OH groups. They may participate in the ion-exchange reactions with the ions of the environment. The amount of ionogenic groups in P. aphthosa cell walls was found to depend on the zone and age of the thallus.  相似文献   

17.
Cell walls were isolated from roots of six plant species to study their ion-exchange capacity for nickel ions (S Ni) at Ni2+ concentration of 10−3 M. The S Ni values varied depending on the plant species from 50 to 150 μmol Ni2+ per gram dry wt; the sorption capacity increased in a row: Poaceae < Chenopodiaceae < Fabaceae. At pH 5 the sorption capacity of cell walls for nickel ions was determined by the presence of carboxyl groups of polygalacturonic acid in the polymeric cell-wall matrix. In all cases the ion-exchange capacity of cell walls was higher at pH 8 than at pH 5, indicating that Ni2+ binds also to a carboxyl group different from that of polygalacturonic acid. Irrespective of plant species, the presence of EDTA in the solution diminished drastically the absorption capacity of cell walls for Ni2+. It is concluded that the presence of 10−3 M EDTA weakens the defense properties of cell walls. The sequestration of Ni2+ in the cell wall can be considered as an effective means of plant cell defense against elevated concentrations of nickel ions in the external medium.  相似文献   

18.
Masaru Tanokura 《Biopolymers》1983,22(12):2563-2576
The 1H-nmr titration curves of chemical shifts versus pH were observed for the protons of D,L-histidyl-D,L-histidine as representative of cases with two or more ionizable groups with similar pKa values. The titration curves of L -histidyl-L -histidine and D -histidyl-L -histidine were individually analyzed according to two mathematical models: one of a macroscopic dissociation series and one of a microscopic dissociation series. Most-probable values and standard deviations were obtained for pKa values and intrinsic chemical shifts. An analysis including the microscopic dissociation series yielded an electrostatic interaction between twoimidazole rings of about 0.3 pH units for L -histidyl-L -histidine and about 0.7 pH units for D -histidyl-L -histidine. The difference of the magnitude of imidazole-imidazole interactions between L -histidyl-L -histidyne and D -histidyl-L -histidine was interpreted in terms of the spatial arrangement of two imidazole rings in each molecule based on the solution conformation estimated from Gd(III)-induced relaxation enhancements.  相似文献   

19.
The pH dependence of redox properties, spectroscopic features and CO binding kinetics for the chelated protohemin-6(7)-l-histidine methyl ester (heme-H) and the chelated protohemin-6(7)-glycyl-l-histidine methyl ester (heme-GH) systems has been investigated between pH 2.0 and 12.0. The two heme systems appear to be modulated by four protonating groups, tentatively identified as coordinated H2O, one of heme’s propionates, Nε of the coordinating imidazole, and the carboxylate of the histidine residue upon hydrolysis of the methyl ester group (in acid medium). The pK a values are different for the two hemes, thus reflecting structural differences. In particular, the different strain at the Fe–N ε bond, related to the different length of the coordinating arm, results in a dramatic alteration of the bond strength, which is much smaller in heme-H than in heme-GH. It leads to a variation in the variation of the pK a for the protonation of the N ε of the axial imidazole as well as in the proton-linked behavior of the other protonating groups, envisaging a cross-talk communication mechanism among different groups of the heme, which can be operative and relevant also in the presence of the protein matrix. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
This study investigates the potentiometric properties of several strains of Shewanella spp. and determines whether these properties can be correlated with lipopolysaccharide (LPS) type. The LPS of eight Shewanella strains was characterized using silver-stained sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and their potentiometric properties determined using high-resolution acid–base titrations. Titrations showed that total ligand concentrations (L T ) ranged from 0.903 ± 0.007 μmol/mg (S. baltica 63) to 1.387 ± 0.007 μmol/mg (S. amazonensis SB2B). Smooth strains (possessing O-side chains) exhibited higher mean L T values than rough strains (no O-side chain). A Tukey’s honestly significantly different (HSD) test revealed, smooth strains exhibited significantly higher L T values than rough strains in 69% of comparisons. Comparison of individual pK a concentrations revealed that smooth LPS strains of Shewanella were relatively enriched in reactive groups at pK a 5, suggesting their LPS O-side chains contained detectable carboxyl groups. Combined pKa spectra from all eight Shewanella strains produced a common trend indicating that the way in which the surface proton-buffering capacity changes with pH is similar for the species studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号