首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

There is an ongoing question regarding the structure forming capabilities of water at ambient temperatures. To probe for different structures, we studied effects in pure water following magnetic field exposures corresponding to the ion cyclotron resonance of H3O+. Included were measurements of conductivity and pH. We find that under ion cyclotron resonance (ICR) stimulation, water undergoes a transition to a form that is hydroxonium-like, with the subsequent emission of a transient 48.5?Hz magnetic signal, in the absence of any other measurable field. Our results indicate that hydronium resonance stimulation alters the structure of water, enhancing the concentration of EZ-water. These results are not only consistent with Del Giudice's model of electromagnetically coherent domains, but they can also be interpreted to show that these domains exist in quantized spin states.  相似文献   

2.
One of the main problems of bioelectromagnetics - the unbelievable narrow resonance peaks at the cyclotron frequency of the alternating magnetic field - was considered. Modern electrodynamics of condensed matter clearly brings out that the reason of this phenomenon is extremely low viscosity within coherence domains of aqueous electrolytic solutions. The electrochemical model of action of combined static and alternating magnetic fields on aqueous solutions of amino acids is proposed. The possibility of arising a succession of changes in ionic forms in these processes was revealed. The dipole ions (zwitterions) together with water molecules electrostatically forming joint groups in the solution, create favorable conditions for arising mixed coherence domains there. Simultaneously with evolution of the coherent processes in these domains, the amino acid zwitterions are transforming into the usual ionic form, fit for cyclotron resonance. The development of cyclotron resonance under action of combined magnetic fields increases the ion kinetic energy, and the ions leave the domains for the incoherent component of the solution according to Del Giudice pattern (Comisso et al., 2006; Del Giudice et al., 2002), creating the peak current through the solution. Then the ions are transforming little by little into zwitterionic form again; after that, the solution becomes ready to react on exposure of magnetic fields again. The possibilities for formation of coherence domains composed of water molecules together with peptide molecules or protein ones are discussed.  相似文献   

3.
Calcium cyclotron resonance and diatom mobility   总被引:5,自引:0,他引:5  
The hypothesis that movement of biological ions may be predicted by cyclotron resonance theory applied to cell membranes is tested in these experiments. Diatoms (Amphora coffeaeformis) were chosen as the biosystem since they move or don't move, depending on how much calcium is transported across the membrane. The experiments demonstrate that a particular ion (calcium) is apparently moved across the cell membrane in response to the DC and AC values of magnetic flux densities (B) and the frequency derived from the cyclotron resonance theory. A clear resonance is shown and a rather sharp frequency response curve is demonstrated. The experiments also show a dose response as the AC value of the flux density is varied, and that odd harmonics of the basic cyclotron frequency are also effective.  相似文献   

4.
Oscillations of a plasma column in a longitudinal magnetic field are considered. It is found that eigenmodes with frequencies close to the ion cyclotron frequency can be excited in columns the radii of which are smaller than the characteristic wavelength of magnetosonic oscillations predicted by the theory of homogeneous plasma. The eigenmodes have the form of waves running around the column axis in the direction of electron gyration in the magnetic field. Magnetosonic oscillations can be excited as a side effect when using helical antennas for ion cyclotron resonance heating of plasma. These oscillations should enhance electron heating in the plasma core, as well as both electron and ion heating at the periphery of the plasma column. The spectrum of eigenmodes of inhomogeneous plasma columns includes oscillations of different nature. Comparative analysis of their properties performed in the present paper is useful for understanding the full picture of the physical processes occurring during ion cyclotron resonance heating and clarifying the characteristic features of the magnetosonic oscillations under study.  相似文献   

5.
Characteristic features of the propagation of electromagnetic electron cyclotron waves in the vicinity of the electron cyclotron resonance surface are investigated both analytically and numerically with allowance for variation in the magnetic field strength and a corresponding variation in the magnetic field direction. It is demonstrated that variation in the magnetic field direction can qualitatively change the wave propagation pattern and can markedly affect the efficiency of electron cyclotron resonance plasma heating in an axisymmetric magnetic trap.  相似文献   

6.
Reports that extremely low-frequency magnetic fields can interfere with normal biological cell function continue to stimulate experimental activity as well as investigations into the possible mechanism of the interaction. The "cyclotron resonance" model of Liboff has been tested by Smith et al. (Bioelectromagnetics 8, 215-227, 1987) using as the biological test system the diatom Amphora coffeiformis. They report enhanced motility of the diatom in response to a low-frequency electromagnetic field tuned to the cyclotron resonance condition for calcium ions. We report here an attempt to reproduce their results. Following their protocol diatoms were seeded onto agar plates containing varying amounts of calcium and exposed to colinear DC and AC magnetic fields tuned to the cyclotron resonant condition for frequencies of 16, 30, and 60 Hz. The fractional motility was compared with that of control plates seeded at the same time from the same culture. We find no evidence of a cyclotron resonance effect.  相似文献   

7.
Except for relatively few polarity reversals the magnitude of the magnetic dipole moment of the earth has remained constant since life first began, allowing evolutionary processes to integrate the geomagnetic field (GMF) into several biological functions. One of these, bearing the classical signature of an ion cyclotron resonance (ICR)-like interaction, results in biological change associated with enhanced proton transport. The wide range of cation masses over which this effect is found suggest a fundamental biological dependence on the GMF, one that functions equally well for electric as well as magnetic fields. Such generalization of ICR requires two things: transparency of tissues to the GMF and suitably tuned ELF resonant magnetic or electric fields. To complement the widely reported ICR responses to applied AC magnetic fields, we hypothesize the existence of weak endogenous ICR electric field oscillations within the cell. This equivalence implies that even in the absence of applied AC magnetic fields, biological systems will exhibit intrinsic GMF-dependent ion cyclotron resonance intracellular interactions. Many ICR effects that have been reported appear as antagonist pairs suggesting that the characteristics of the GMF have not only been incorporated into the genome but also appear to function in an endocrine-like manner.  相似文献   

8.
Although considerable experimental evidence now exists to indicate that low-frequency magnetic fileds influence living cells, the mode of coupling remains a mystery. We propose a radical new model for electromagnetic interactions with cells, one resulting from a cyclotron resonance mechanism attached to ions moving through transmembrane channels. It is shown that the cyclotron resonance condition on such ions readily leads to a predicted ELF-coupling at geomagnetic levels. This model quantitatively explains the results reported by Blackman et al. (1984), identifying the focus of magnetic interaction in these experiments as K+ charge carriers. The cyclotron resonance concept is consistent with recent indications showing that many membrane channels have helical configurations. This model is quite testable, can probably be applied to other circulating charge components within the cell and, most important, leads to the feasibility of direct resonant electromagnetic energy transfer to selected compartments of the cell.  相似文献   

9.
Physical processes determining the excitation of RF electromagnetic fields in a plasma column in a magnetic field are analyzed. The Alfvén resonance plays an important role at frequencies close to the ion cyclotron frequency. It leads to the enhancement of the RF electric field and transformation of Alfvén oscillations with a predominantly transverse polarization of the electric field into lower hybrid ones, which have a significant longitudinal component of the electric field. Lower hybrid oscillations efficiently interact with electrons causing their heating. Difficulties in the implementation of ion cyclotron resonance heating by the magnetic beach method are outlined. The processes considered in this work can be important for the VASIMR plasma engine.  相似文献   

10.
In this study we show a reproduction of the Zhadin experiment, which consists of the transient increase of the electrolytic current flow across an aqueous solution of L-arginine and L-glutamic acid induced by a proper low frequency alternating magnetic field superimposed to a static magnetic field of higher strength. We have identified the mechanisms that were at the origin of the so-far poor reproducibility of the above effect: the state of polarization of the electrode turned out to be a key parameter. The electrochemical investigation of the system shows that the observed phenomenon involves the transitory activation of the anode due to ion cyclotron frequency effect, followed again by anode passivation due to the adsorption of amino acid and its oxidation products. The likely occurrence of similar ion cyclotron resonance (ICR) phenomena at biological membranes, the implications on ion circulation in living matter, and the consequent biological impact of environmental magnetic fields are eventually discussed.  相似文献   

11.
用细胞分析成像光盘记录系统测量了3T3细胞在某些ELF磁场和温度条件下生长周期的变化.实验结果表明,只有某些频率的ELF磁场才对细胞生长产生影响,磁场对细胞生长的影响还与培养细胞的生化环境有关.温度和ELF磁场都能影响细胞的生长.但二者的机理是不一样的,当撤除ELF磁场后,细胞在短时间内(2天以上)继续保持着ELF场对其生长的影响.而细胞生长周期能在短时间内(2天以内)随着温度的变化而变化.温度引起的细胞生长的变化可能与细胞内的各种生长因子、生物离子的活性有关.ELF磁场引起的细胞生长的变化可能与ELF磁场对细胞膜的影响有关,与细胞内细胞生长必不可少的生物离子(如Ca~(2+))的浓度有关.  相似文献   

12.
The incorporation of 45Ca in mixed human lymphocytes was measured following one-hour exposures of the cells to combined steady and periodic magnetic fields designed to probe for cyclotron resonance response in calcium incorporation. Measurements were made as a function of magnetic field frequency, up to 30 Hz, and as a function of magnetic field amplitude, up to 1.5 x 10(-4) Trms. The amplitude measurements demonstrated that the relative 45Ca uptake at resonance follows different mechanisms of interaction above and below 0.2 x 10(-4) Trms. After adjusting the magnetic field configuration for maximum incorporation, we then determined the effects of the calcium influx blocker nifedipine on 45Ca incorporation, with and without simultaneous exposure to this specific magnetic field combination. The presence of nifedipine in both unexposed and exposed cell suspensions resulted in decreased 45Ca uptake, presumably through the slow inward calcium channels. Evidence was found suggesting that nifedipine acts antagonistically to the 45Ca cyclotron resonance tuning signal.  相似文献   

13.
The application of techniques based on magnetic resonance, specifically electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR), has provided a wealth of new information on RNA structures, as well as insights into the dynamics and function of these important biomolecules. NMR spectroscopy is very successful for determining the solution structures of small RNA domains, aptamers and ribozymes, and exploring their intramolecular dynamics and interactions with ligands. EPR-based methods have been used to map local dynamic and structural features of RNA, to explore different modes of RNA-ligand interaction, to obtain long-range structural restraints and to probe metal-ion-binding sites.  相似文献   

14.
The measured dependences of the equivalent plasma resistance on the external magnetic field (0–50 G) in a 46-cm-diameter RF inductive plasma source operating at frequencies of 2, 4, and 13.56 MHz and a power of 100–500 W are presented. The experiments were carried out in argon at pressures of 0.1–30 mTorr. The presence of the external magnetic field leads to the appearance of resonance domains of efficient RF power absorption corresponding to the conditions of resonance excitation of helicons coupled with Trivelpiece–Gould modes. It is shown that RF power absorption at frequencies of 2 MHz can be optimized by applying an external magnetic field corresponding to the domains of resonance absorption. The effect is enhanced with increasing operating frequency.  相似文献   

15.
Low-intensity magnetic fields alter operant behavior in rats   总被引:1,自引:0,他引:1  
The present study demonstrates that operant behavior is affected by a combination of a 60-Hz magnetic field and a magnetostatic field 2.6 X 10(-5) T (about half the geomagnetic field). Rats exposed to this combination for 30 min consistently exhibited changes in the rate and pattern of responding during the differential reinforcement of low rate (DRL) component of a multiple fixed ratio (FR) DRL reinforcement schedule. By contrast, there were no measurable changes following exposure to the static field alone or to the oscillating field alone, even with a 10-fold increase in intensity (5 X 10(-5) to 5 X 10(-4) Trms). A cyclotron resonance mechanism has been suggested as a possible explanation for the observation that weak static magnetic fields modify the response of in vitro brain tissue to low-frequency magnetic fields. The choice of static field intensity Bo and frequency nu in the present study follows from the cyclotron resonance condition nu = (1/2 pi)(q/m)Bo, for singly charged lithium, an element in extensive use in the clinical treatment of affective disorders in humans. The present research is consistent with a cellular cyclotron resonance mechanism and tends to imply a functional dependence of behavior on the geomagnetic field.  相似文献   

16.
BACKGROUND: Previous reports indicate altered metabolism and enzyme kinetics for various organisms, as well as changes of neuronal functions and behaviour of higher animals, when they were exposed to specific combinations of weak static and alternating low frequency electromagnetic fields. Field strengths and frequencies, as well as properties of involved ions were related by a linear equation, known as the formula of ion cyclotron resonance (ICR, abbreviation mentioned first by Liboff). Under certain conditions already a aqueous solution of the amino acid and neurotransmitter glutamate shows this effect. METHODS: An aqueous solution of glutamate was exposed to a combination of a static magnetic field of 40 muT and a sinusoidal electromagnetic magnetic field (EMF) with variable frequency (2-7 Hz) and an amplitude of 50 nT. The electric conductivity and dielectric properties of the solution were investigated by voltammetric techniques in combination with non linear dielectric spectroscopy (NLDS), which allow the examination of the dielectric properties of macromolecules and molecular aggregates in water. The experiments target to elucidate the biological relevance of the observed EMF effect on molecular level. RESULTS: An ion cyclotron resonance (ICR) effect of glutamate previously reported by the Fesenko laboratory 1998 could be confirmed. Frequency resolution of the sample currents was possible by NLDS techniques. The spectrum peaks when the conditions for ion cyclotron resonance (ICR) of glutamate are matched. Furthermore, the NLDS spectra are different under ICR- and non-ICR conditions: NLDS measurements with rising control voltages from 100-1100 mV show different courses of the intensities of the low order harmonics, which could possibly indicate "intensity windows". Furthermore, the observed magnetic field effects are pH dependent with a narrow optimum around pH 2.85. CONCLUSIONS: Data will be discussed in the context with recent published models for the interaction of weak EMF with biological matter including ICR. A medical and health relevant aspect of such sensitive effects might be given insofar, because electromagnetic conditions for it occur at many occasions in our electromagnetic all day environment, concerning ion involvement of different biochemical pathways.  相似文献   

17.
The three-dimensional structure of human [113Cd7]metallothionein-2 was determined by nuclear magnetic resonance spectroscopy in solution. Sequence-specific 1H resonance assignments were obtained using the sequential assignment method. The input for the structure calculations consisted of the metal-cysteine co-ordinative bonds identified with heteronuclear correlation spectroscopy, 1H-1H distance constraints from nuclear Overhauser enhancement spectroscopy, and spin-spin coupling constants 3JHN alpha and 3J alpha beta. The molecule consists of two domains, the beta-domain including amino acid residues 1 to 30 and three metal ions, and the alpha-domain including residues 31 to 61 and four metal ions. The nuclear magnetic resonance data present no evidence for a preferred relative orientation of the two domains. The polypeptide-to-metal co-ordinative bonds in human metallothionein-2 are identical to those in the previously determined solution structures of rat metallothionein-2 and rabbit metallothionein-2a, and the polypeptide conformations in the three proteins are also closely similar.  相似文献   

18.
The cyclotron resonance model, recently proposed to account for physiological response to weak environmental magnetic fields, is shown to violate the laws of classical mechanics. Further, it is argued that the ubiquitous presence of dynamic friction in fluid media precludes significant magnetic effects on membrane ion transport.  相似文献   

19.
The total current of Ca2+ ions through patch-clamped cell membranes was measured while exposing clonal insulin-producing β-cells (RINm5F) to a combination of DC and AC magnetic fields at so-called cyclotron resonance conditions. Previous experimental evidence supports the theory that a resonant interaction between magnetic fields and organisms can exist. This experiment was designed to test one possible site of interaction: channels in the cell membrane. The transport of Ca2+ ions through the protein channels of the plasma membrane did not show any resonant behavior in the frequency range studied. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Structure and self-association of the Rous sarcoma virus capsid protein   总被引:13,自引:0,他引:13  
BACKGROUND: The capsid protein (CA) of retroviruses, such as Rous sarcoma virus (RSV), consists of two independently folded domains. CA functions as part of a polyprotein during particle assembly and budding and, in addition, forms a shell encapsidating the genomic RNA in the mature, infectious virus. RESULTS: The structures of the N- and C-terminal domains of RSV CA have been determined by X-ray crystallography and solution nuclear magnetic resonance (NMR) spectroscopy, respectively. The N-terminal domain comprises seven alpha helices and a short beta hairpin at the N terminus. The N-terminal domain associates through a small, tightly packed, twofold symmetric interface within the crystal, different from those previously described for other retroviral CAs. The C-terminal domain is a compact bundle of four alpha helices, although the last few residues are disordered. In dilute solution, RSV CA is predominantly monomeric. We show, however, using electron microscopy, that intact RSV CA can assemble in vitro to form both tubular structures constructed from toroidal oligomers and planar monolayers. Both modes of assembly occur under similar solution conditions, and both sheets and tubes exhibit long-range order. CONCLUSIONS: The tertiary structure of CA is conserved across the major retroviral genera, yet sequence variations are sufficient to cause change in associative behavior. CA forms the exterior shell of the viral core in all mature retroviruses. However, the core morphology differs between viruses. Consistent with this observation, we find that the capsid proteins of RSV and human immunodeficiency virus type 1 exhibit different associative behavior in dilute solution and assemble in vitro into different structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号