首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The influence of the nitrogen/carbon ratio was studied during fermentation with Leuconostoc mesenteroides NRRL B512(f) using sucrose as substrate. The enzyme concentration was measured through activity tests and radiotracer tests with [14C]phenylalanine. In batch fermentation a slowing down in the rate of enzyme synthesis was observed with a decrease in the nitrogen/carbon ratio. Addition of pulses of nitrogen when the nitrogen/carbon ratio decreased allowed a constant production rate of enzyme and lower fermentation time. The influence of complementary sugars was also addressed. Lactose inhibited enzyme production. When galactose was used the yield was the same as in the fermentation with sucrose alone, but with a different production rate. Maltose favoured the synthesis of dextransucrase.  相似文献   

3.
4.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-α-D-glucan 6-α-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

5.
Cells of Leuconostoc mesenteroides were immobilized within porus, stainless-steel (SS) supports and used for dextransucrase (DS) and dextran production. The pore size of the support significantly affected the dextran yields, which were greatest with average pore sizes of 2-5 mum. All immobilized-cell biocatalysts in porous stainless steel produced higher yields than free cells, with the exception of cells confined in submicrometer pores (0.5 mum). Coating supports of larger pore size (40 and 100 mum) with calcium alginate enhanced the cell-loading capacity of the supports and increased dextran and fructose yields in the cell-free broth. Controlled, fed-batch, DS production (activation), as a step preliminary to dextran production, significantly improved the subsequent dextran and fructose yields and shortened the time required to attain the maximum such yields. Scanning electron microscopy (SEM) of immobilized L. mesenteroides in stainless steel shows an irregular pattern of the microorganism inside the pores of the solid supports. Coating the porous solid supports with a cell-free calcium alginate layer led to an increase in the cell density inside the support. Cell growth inside the coated, porous stainless steel had no distinct growth form. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
An Escherichia coli transformant (pDSRB742CK) was obtained from the DSRB742 clone by using ultrasoft X-rays for the expression of a dextransucrase. The enzyme differed in several aspects from DSRB742 dextransucrase: it (1) was constitutive; (2) was extracellular; (3) had 2.6 times greater activity (0.035 IU/ml and 0.23 IU/mg); and (4) synthesized a highly (15.6%) -(1→3) branched dextran. Seven nucleotides of the parent gene (dsrB742) were changed in the nucleotide sequence; four nucleotides were changed in the open reading frame (ORF) that resulted in a 30 amino acid deletion in the N-terminus.  相似文献   

7.
Water-insoluble, cell-free dextran biosynthesis from Leuconostoc mesenteroides NRRL B-523 has been examined. Cell-bound dextransucrase is used to produce cell-free dextran in a sucrose-rich acetate buffer medium. A comparison between the soluble and insoluble dextrans is made for various sucrose concentrations, and 15% sucrose gave the highest amount of cell-free dextran for a given time. L. mesenteroides B-523 produces more insoluble dextran than soluble dextran. The near cell-free synthesis was validated in a batch reactor, by monitoring the cell growth which is a small (10(6)-10(7) CFU/mL) and constant value throughout the synthesis.  相似文献   

8.
Glucansucrases: mechanism of action and structure-function relationships   总被引:12,自引:0,他引:12  
Glucansucrases are produced principally by Leuconostoc mesenteroides and oral Streptococcus species, but also by the lactic acid bacteria (Lactococci, Lactobacilli). They catalyse the synthesis of high molecular weight D-glucose polymers, named glucans, from sucrose. In the presence of efficient acceptors, they catalyse the synthesis of low molecular weight oligosaccharides. Glucosidic bond synthesis occurs without the mediation of nucleotide activated sugars and cofactors are not necessary. Glucansucrases have an industrial value because of the production of dextrans and oligosaccharides and a biological importance by their key role in the cariogenic process. They were identified more than 50 years ago. The first glucansucrase encoding gene was cloned more than 10 years ago. But the mechanism of their action remains incompletely understood. However, in order to synthesise oligosaccharides of biological interest or to develop vaccines against dental caries, elucidation of the factors determining the regiospecificity and the regioselectivity of glucansucrases is necessary. The cloning of glucansucrase encoding genes in addition to structure-function relationship studies have allowed the identification of important amino acid residues and have shown that glucansucrases are composed of two functional domains: a core region (ca. 1000 amino acids) involved in sucrose binding and splitting and a C-terminal domain (ca. 500 amino acids) composed of a series of tandem repeats involved in glucan binding. Enzymology studies have enabled different models for their action mechanism to be proposed. The use of secondary structure prediction has led to a clearer knowledge of structure-function relationships of glucansucrases. However, mainly due to the large size of these enzymes, data on the three-dimensional structure of glucansucrases (given by crystallography and modelling) remain necessary to clearly identify those features which determine function.  相似文献   

9.
For the first time, glucosylation of alpha-butyl- and alpha-octylglucopyranoside was achieved using dextransucrase (DS) of various specificities, and alternansucrase (AS) from Leuconostoc mesenteroides. All the glucansucrases (GS) tested used alpha-butylglucopyranoside as acceptor; in particular, DS produced alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside and alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->6)-O-butyl-alpha-D-glucopyranoside. In contrast, alpha-octylglucopyranoside was glucosylated only by AS which was shown to be the most efficient catalyst. The conversion rates, obtained with this enzyme at sucrose to acceptor molar ratio of 2:1 reached 81 and 61% for alpha-butylglucopyranoside and alpha-octylglucopyranoside, respectively. Analyses obtained from liquid chromatography coupled with mass spectrometry revealed that different series of alpha-alkylpolyglucopyranosides regioisomers of increasing polymerization degree can be formed depending on the specificity of the catalyst.  相似文献   

10.
Zhang H  Hu Y  Zhu C  Zhu B  Wang Y 《Biotechnology letters》2008,30(8):1441-1446
The gene dexYG encoding the dextransucrase from an industrial strain of Leuconostoc mesenteroides 0326 was isolated by PCR. The nucleotide sequence of the dexYG gene consists of an open reading frame (ORF) of 4,584 bp, coding for a 1,527 aa protein with a Mr of 170 kDa. The results were analysed by a BLAST similarity search of the GenBank database, which revealed the amino acid sequence was similiar to dsrD derived from L. mesenteroides Lcc4. The dexYG gene was subcloned into the plasmid pET28a(+) and was expressed in E. coli BL21 (DE3) by IPTG induction. The pH value was one of the main reasons which caused the degradation of enzyme activity in the later stage of induction. The highest activity was reached 36 U/ml after 5 h induction in medium at pH 6.0. Biotransformation yield of the enzyme reached 65% and the molecular weight of transformed dextran was more than 68 kDa in 2 h.  相似文献   

11.
Acetoin production in Leuconostoc mesenteroides NCDO 518   总被引:1,自引:0,他引:1  
Abstract Cell suspensions of Leuconostoc mesenteroides NCDO 518 converted pyruvate to acetoin and a small amount of lactate and acetate. Acetoin was not produced from mixtures of pyruvate and glucose unless the ratio of pyruvate to glucose was greater than 2:1. In the presence of glucose, external pyruvate was first used as an electron acceptor, being reduced to lactate, and was converted to acetoin only after the exhaustion of glucose. Use of added pyruvate as an electron acceptor suppressed ethanol formation and the products of glucose fermentation were then lactate and acetate; 2 mol of pyruvate per mol of glucose were required to completely suppress ethanol formation. It is suggested that acetoin is produced by heterofermentative organisms when available pyruvate is in excess of that required for reoxidation of all NADH produced during glucose fermentation.  相似文献   

12.
Multiple active lower molecular weight forms from Leuconostoc mesenteroides B512F dextransucrase have been reported. It has been suggested that they arise from proteolytic processing of a 170 kDa precursor. In this work, the simultaneous production of proteases and dextransucrase was studied in order to elucidate the dextransucrase proteolytic processing. The effect of the nitrogen source on protease and dextransucrase production was studied. Protease activity reaches a maximum early in the logarithmic phase of dextransucrase synthesis using the basal culture medium but the nitrogen source plays an important effect on growth: the highest protease concentration was obtained when ammonium sulfate, casaminoacids or tryptone were used. Two active forms of 155 and 129 kDa were systematically obtained from dextransucrase precursor by proteolysis. The amino termini of these forms were sequenced and the cleavage site deduced. Both forms of the enzyme obtained had the same cleavage site in the amino terminal region (F209–Y210). From dextransucrase analysis, various putative cleavage sites with the same sequence were found in the variable region and in the glucan binding domain. Although no structural differences were found in dextrans synthesized with both the precursor and the proteolyzed 155 kDa form under the same reaction conditions, their rheological behaviour was modified, with dextran of a lower viscosity yielded by the smaller form.Martha Argüello-Morales and Mónica Sánchez-González equally contributed to this work.  相似文献   

13.
Leuconostoc mesenteroides B-512FMC, a constitutive mutant for dextransucrase, was grown on glucose, fructose, or sucrose. The amount of cell-associated dextransucrase was about the same for the three sugars at different concentrations (0.6% and 3%). Enzyme produced in glucose medium was adsorbed on Sephadex G-100 and G-200, but much less enzyme was adsorbed when it was produced in sucrose medium. Sephadex adsorption decreased when the glucose-produced enzyme was preincubated with dextrans of molecular size greater than 10 kDa. The release of dextransucrase activity from Sephadex by buffer (20 mM acetate, pH 5.2) was the highest at 28°–30°C. The addition of dextran to the enzyme stimulated dextran synthesis but had very little effect on the temperature or pH stability. Dextransucrase purified by ammonium sulfate precipitation, hydroxyapatite chromatography, and Sephadex G-200 adsorption did not contain any carbohydrate, and it synthesized dextran, showing that primers are not necessary to initiate dextran synthesis. The purified enzyme had a molecular size of 184 kDa on SDS-PAGE. On standing at 4°C for 30 days, the native enzyme was dissociated into three inactive proteins of 65, 62, and 57 kDa. However, two protein bands of 63 and 59 kDa were obtained on SDS-PAGE after heat denaturation of the 184-kDa active enzyme at 100°C. The amount of 63-kDa protein was about twice that of 59-kDa protein. The native enzyme is believed to be a trimer of two 63-kDa and one 59-kDa monomers.  相似文献   

14.
Highly purified lipopolysaccharides (LPS) obtained from four strains of Pasteurella haemolytica representative of four different serotypes were studied to ascertain their overall structural elements and sugar and fatty acid compositions. SDS-PAGE analysis revealed that each LPS was of the smooth-type although they differed in migration patterns. Somewhat unusual features of these LPS included the presence of: (a) rhamnose in the core oligosaccharides of serotypes 2 and 3; and (b) sialic acid in the LPS of serotypes 1 and 5. The fatty acids, myristic, hydroxymyristic and palmitic occur in essentially equivalent amounts in each of these LPS. In addition, stearic acid was present in small amounts of serotypes 1 and 5.  相似文献   

15.
16.
Five strains of cellulolytic bacteria and four strains of Phanerochaete chrysosporium were evaluated for the lignocellulolytic enzyme production during submerged fermentation (SmF) of paddy straw. Extra-cellular enzyme assay for CMCase, FPase, Cellobiase, Xylanase, Lignin peroxidase and Laccase enzymes was performed after 7 and 15 days of submerged fermentation. Cellulomonas cellulans MTCC 23, Cytophaga hutchinsonii NCIM 2338 and Phanerochaete chrysosporium MTCC 787 were found to produce higher lignocellulolytic enzyme activities than rest of the cultures after 15 days of fermentation.  相似文献   

17.
Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30°C at a pH of 5.0.  相似文献   

18.
Continuous malolactic fermentation in red wine using free Oenococcus oeni   总被引:4,自引:0,他引:4  
Malolactic fermentation (MLF) of wine in continuous culture was obtained by using Oenococcus oeni (formerly Leuconostoc oenos). The maximum malic acid degradation in our bioreactor system was reached at a dilution rate of 0.016h–1, and 92–95% of the malic acid (3.9–4.0g/l) was converted to lactic acid and CO2.  相似文献   

19.
Malolactic fermentation (MLF), which improves organoleptic properties and biologic stability of some wines, may cause wine spoilage if uncontrolled. Bacteriocins were reported as efficient preservatives to control MLF through their bactericidal effect on malolactic bacteria. Leuconostoc mesenteroides subsp. cremoris W3 isolated from wine produces an inhibitory substance that is bactericidal against malolactic bacteria in model wine medium. Treatment of the culture supernatant of strain W3 with proteases eliminated the inhibitory activity, which proved that it is a true bacteriocin and we tentatively termed it mesentericin W3. The bacteriocin inhibited the growth of food-borne pathogenic bacteria such as Enterococcus faecalis, Listeria monocytogenes, and malolactic bacteria. It was active over a wide pH range and stable to organic solvents and heat. Mesentericin W3 was purified to homogeneity by a pH-mediated cell adsorption–desorption method, cation exchange, hydrophobic interaction, and reverse-phase chromatography. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy (MS) and partial amino acid sequence analysis revealed that mesentericin W3 was identical to mesentericin Y105.  相似文献   

20.
A novel dextransucrase gene, DSRN, was obtained by ultrasoft X-ray treatment of the DSRB742 gene. The DSRN gene was further mutated via site-directed mutagenesis producing four mutants: DSRN1 (F196S), DSRN2 (Y346N), DSRN3 (K395T) and DSRN4 (P980T). Dextransucrases derived from DSRB742 and its mutants were expressed in E. coli and affinity-purified using dextran to give 80% purity. They had specific activities of 0.6–17 U/mg with Km values of 18–88 mM. DSRB742 had the lowest (0.02 s−1 · mM−1) and DSRN1 had the highest (0.13 s−1 · mM−1) Kcat/Km values. DSRN3 had the highest enzymatic transglycosylation efficiency with maltose (63% of theoretical), gentiobiose (39%), or salicine (40%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号