共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine proteins with lignin peroxidase activity were separated from cultures of Phanerochaete chrysosporium INA-12 in glycerol as carbon source and non-nitrogen limited. Four lignin peroxidase isozymes (4, 5, 8, 9) were purified and characterized. Although differences in kinetic parameters could be shown, antibody reaction showed homology between isozymes. However, thermal stability studied, peptide mapping results, and N-terminal sequence analyses established a higher degree of homology between isozymes 4/5 and 8/9 types. Protein characterization and kinetic data indicate that lignin peroxidase isozymes 4, 5, 8, and 9 differ from described isozymes in strain BKM. The higher specific activity of lignin peroxidase isozymes in cultures with glycerol than in nitrogen-starved cultures accounts for the higher lignin peroxidase activity obtained in these conditions. 相似文献
2.
Homologous Expression of Recombinant Lignin Peroxidase in Phanerochaete chrysosporium 总被引:1,自引:0,他引:1 下载免费PDF全文
Maarten D. Sollewijn Gelpke Mary Mayfield-Gambill Geoffrey P. Lin Cereghino Michael H. Gold 《Applied microbiology》1999,65(4):1670-1674
The glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter was used to drive expression of lip2, the gene encoding lignin peroxidase (LiP) isozyme H8, in primary metabolic cultures of Phanerochaete chrysosporium. The expression vector, pUGL, also contained the Schizophyllum commune ura1 gene as a selectable marker. pUGL was used to transform a P. chrysosporium Ura11 auxotroph to prototrophy. Ura+ transformants were screened for peroxidase activity in liquid cultures containing high-carbon and high-nitrogen medium. Recombinant LiP (rLiP) was secreted in active form by the transformants after 4 days of growth, whereas endogenous lip genes were not expressed under these conditions. Approximately 2 mg of homogeneous rLiP/liter was obtained after purification. The molecular mass, pI, and optical absorption spectrum of rLiPH8 were essentially identical to those of the wild-type LiPh8 (wt LiPH8), indicating that heme insertion, folding, and secretion functioned normally in the transformant. Steady-state and transient-state kinetic properties for the oxidation of veratryl alcohol between wtLiPH8 and rLiPH8 were also identical. 相似文献
3.
Lignin Peroxidase Isozymes from Phanerochaete chrysosporium Can Be Enzymatically Dephosphorylated 下载免费PDF全文
The extracellular lignin peroxidase (LIP) protein profile of the fungus Phanerochaete chrysosporium, grown in nonimmersed liquid culture under conditions of excess nitrogen, changed markedly with culture age. At peak LIP activity (day 4), the heme-protein profile in the extracellular fluid, analyzed by anion-exchange high-pressure liquid chromatography, was characterized by a predominance of the LIP isozymes H1 and H2, small amounts of H6 and H8, and other minor peaks, designated Ha and Hb. On day 5, the level of H1 increased and it became the dominant isozyme, with a corresponding decrease in the level of H2. Moreover, the relative levels of H6 and H8 decreased with corresponding increases in Ha and Hb levels. This change in LIP profile occurred extracellularly and resulted from the enzymatic dephosphorylation of LIP isozymes. An enzymatic fraction responsible for LIP isozyme dephosphorylation, termed LIP dephosphorylating (LpD) fraction, was partially purified from the culture fluid. Incubation of the LpD fraction with (sup32)P-labeled H2, H6, H8, and H10 isozymes separated from nitrogen-limited cultures resulted in the formation of the dephosphorylated isozymes H1, Ha, Hb, and Hc, respectively. Dephosphorylation did not significantly change the catalytic properties of the LIP isozymes with veratryl alcohol as a substrate. LIP dephosphorylation is therefore suggested to be a posttranslational modification process catalyzed extracellularly by the LpD activity. 相似文献
4.
Penetrability of White Rot-Degraded Pine Wood by the Lignin Peroxidase of Phanerochaete chrysosporium 下载免费PDF全文
The penetration of enzymes into wood cell walls during white rot decay is an open question. A postembedding immunoelectron microscopic technique was the method of choice to answer that question. Infiltration of pine wood specimens with a concentrated culture filtrate greatly improved the labeling density and, thereby, reproducibility. Characterization of the concentrated culture filtrate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting (immunoblotting) revealed three closely spaced proteins of molecular weights about 42,000 showing immunoreactivity against anti-lignin peroxidase serum. It was shown by immunogold labeling that lignin peroxidase of Phanerochaete chrysosporium is located on the surface of the wood cell wall or within areas of heavy attack. It did not diffuse into undecayed parts of the cell wall. The reasons for preventing lignin peroxidase from penetrating wood cell walls during white rot decay are discussed. 相似文献
5.
Paula A. Belinky Nufar Flikshtein Sergey Lechenko Shimon Gepstein Carlos G. Dosoretz 《Applied microbiology》2003,69(11):6500-6506
We studied oxidative stress in lignin peroxidase (LIP)-producing cultures (cultures flushed with pure O2) of Phanerochaete chrysosporium by comparing levels of reactive oxygen species (ROS), cumulative oxidative damage, and antioxidant enzymes with those found in non-LIP-producing cultures (cultures grown with free exchange of atmospheric air [control cultures]). A significant increase in the intracellular peroxide concentration and the degree of oxidative damage to macromolecules, e.g., DNA, lipids, and proteins, was observed when the fungus was exposed to pure O2 gas. The specific activities of manganese superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase and the consumption of glutathione were all higher in cultures exposed to pure O2 (oxygenated cultures) than in cultures grown with atmospheric air. Significantly higher gene expression of the LIP-H2 isozyme occurred in the oxygenated cultures. A hydroxyl radical scavenger, dimethyl sulfoxide (50 mM), added to the culture every 12 h, completely abolished LIP expression at the mRNA and protein levels. This effect was confirmed by in situ generation of hydroxyl radicals via the Fenton reaction, which significantly enhanced LIP expression. The level of intracellular cyclic AMP (cAMP) was correlated with the starvation conditions regardless of the oxygenation regimen applied, and similar cAMP levels were obtained at high O2 concentrations and in cultures grown with atmospheric air. These results suggest that even though cAMP is a prerequisite for LIP expression, high levels of ROS, preferentially hydroxyl radicals, are required to trigger LIP synthesis. Thus, the induction of LIP expression by O2 is at least partially mediated by the intracellular ROS. 相似文献
6.
Characterization of Peroxidase Secretion and Subcellular Organization of Phanerochaete chrysosporium INA-12 in the Presence of Various Soybean Phospholipid Fractions 总被引:1,自引:3,他引:1 下载免费PDF全文
Cecile Capdevila Serge Moukha Miklos Ghyczy Jacques Theilleux Brigitte Gelie Michel Delattre Georges Corrieu Marcel Asther 《Applied microbiology》1990,56(12):3811-3816
Stimulation of lignin peroxidase production by exogenous phospholipids depends on the composition of the phospholipid fraction prepared by using the Nattermann process. The fraction composed mainly of negatively charged phospholipids (NAT 89) was the most efficient source for exoprotein secretion by Phanerochaete chrysosporium INA-12. The results of biochemical marker assays and ultrastructural morphology determination by electron microscopy were correlated. Activities of succinate dehydrogenase, a mitochondrial marker, and cytochrome c oxidoreductase, an endoplasmic reticulum (ER) marker, were increased 1.3- and 2.2-fold, respectively, in the presence of NAT 89. Electron microscopy observations suggested that the amount of mitochondria and ER in culture containing phospholipids was increased at the optimum day of lignin peroxidase production. Therefore, phospholipids enhanced energetic metabolism of strain INA-12 and markedly modified fungus physiology. Since ER is involved in enzyme synthesis, we suggest that its increased amount in mycelium cultured with NAT 89 is directly associated with the higher production of lignin peroxidase. 相似文献
7.
Previous studies have shown that a lignin-degrading system appears in cultures of the white rot fungus Phanerochaete chrysosporium in response to nitrogen starvation, apparently as part of secondary metabolism. We examined the influence of limiting carbohydrate, sulfur, or phosphorus and the effect of varying the concentrations of four trace metals, Ca, and Mg. Limitation of carbohydrate or sulfur but not limitation of phosphorus triggered ligninolytic activity. When only carbohydrate was limiting, supplementary carbohydrate caused a transient repression of activity. In carbohydrate-limited cultures, ligninolytic activity appeared when the supplied carbohydrate was depleted, and this activity was associated with a decrease in mycelial dry weight. The amount of lignin degraded depended on the amount of carbohydrate provided, which determined the amount of mycelium produced during primary growth. Carbohydrate-limited cultures synthesized only small amounts of the secondary metabolite veratryl alcohol compared with nitrogen-limited cultures. l-Glutamate sharply repressed ligninolytic activity in carbohydrate-starved cultures, but NH(4) did not. Ligninolytic activity was also triggered in cultures supplied with 37 muM sulfur as the only limiting nutrient. The balance of trace metals, Mg, and Ca was important for lignin degradation. 相似文献
8.
Manganese Deficiency Can Replace High Oxygen Levels Needed for Lignin Peroxidase Formation by Phanerochaete chrysosporium 总被引:1,自引:0,他引:1 下载免费PDF全文
Nathan Rothschild Ayala Levkowitz Yitzhak Hadar Carlos G. Dosoretz 《Applied microbiology》1999,65(2):483-488
The combined effects of Mn and oxygen on lignin peroxidase (LIP) activity and isozyme composition in Phanerochaete chrysosporium were studied by using shallow stationary cultures grown in the presence of limited or excess N. When no Mn was added, LIP was formed in both N-limited and N-excess cultures exposed to air, but no LIP activity was observed at Mn concentrations greater than 13 mg/liter. In oxygen-flushed, N-excess cultures, LIP was formed at all Mn concentrations, and the peak LIP activity values in the extracellular fluid were nearly identical in the presence of Mn concentrations ranging from 3 to 1,500 mg/liter. When the availability of oxygen to cultures exposed to air was increased by growing the fungus under nonimmersed liquid conditions, higher levels of Mn were needed to suppress LIP formation compared with the levels needed in shallow stationary cultures. The composition of LIP isozymes was affected by the levels of N and Mn. Addition of veratryl alcohol to cultures exposed to air did not eliminate the suppressive effect of Mn on LIP formation. A deficiency of Mn in N-excess cultures resulted in lower biomass and a lower rate of glucose consumption than in the presence of Mn. In addition, almost no activity of the antioxidant enzyme Mn superoxide dismutase was observed in Mn-deficient, N-excess cultures, but the activity of this enzyme increased as the Mn concentration increased from 3 to 13 mg/liter. No Zn/Cu superoxide dismutase activity was observed in N-excess cultures regardless of the Mn concentration. 相似文献
9.
10.
Roles of Lignin Peroxidase and Manganese Peroxidase from Phanerochaete chrysosporium in the Decolorization of Olive Mill Wastewaters 总被引:3,自引:0,他引:3 下载免费PDF全文
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization. 相似文献
11.
M. Asther L. Lesage R. Drapron G. Corrieu E. Odier 《Applied microbiology and biotechnology》1988,27(4):393-398
Summary Ligninase activity of Phanerochaete chrysosporium INA-12 was increased when vegetable oils emulsified with sorbitan polyoxyethylene monooleate (Tween 80) were added to growth medium. Maximal enzyme yield was 22.0 nkat·ml-1 in olive oil cultures after 4 days incubation. P. chrysosporium INA-12 was also able to utilize tall oil fatty acids for ligninase synthesis. An extracellular lipase activity was detected during the primary phase of growth in culture containing vegetable oils. On the other hand, ligninase production was 1.5-fold enhanced when olive oil cultures were supplemented with soybean asolectin as a phospholipid source. In cultures supplied with olive oil plus asolectin, P. chrysosporium INA-12 mycelium exhibited a preferential enrichment of oleic acid (C18:1), phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) as compared to lipid-free medium. PC and LPC enrichment was associated with an increased ratio of saturated versus unsaturated fatty acids of phospholipids. 相似文献
12.
Relationship Between Lignin Degradation and Production of Reduced Oxygen Species by Phanerochaete chrysosporium 总被引:4,自引:7,他引:4 下载免费PDF全文
The relationship between the production of reduced oxygen species, hydrogen peroxide (H2O2), superoxide (O2), and hydroxyl radical (·OH), and the oxidation of synthetic lignin to CO2 was studied in whole cultures of the white-rot fungus Phanerochaete chrysosporium Burds. The kinetics of the synthesis of H2O2 coincided with the appearance of the ligninolytic system; also, H2O2 production was markedly enhanced by growth under 100% O2, mimicking the increase in ligninolytic activity characteristic of cultures grown under elevated oxygen tension. Lignin degradation by whole cultures was inhibited by a specific H2O2 scavenger, catalase, implying a role for H2O2 in the degradative process. Superoxide dismutase also inhibited lignin degradation, suggesting that O2 is also involved in the breakdown of lignin. The production of ·OH was assayed in whole cultures by a benzoate decarboxylation assay. Neither the kinetics of ·OH synthesis nor the final activity of its producing system obtained under 100% O2 correlated with that of the lignin-degrading system. However, lignin degradation was inhibited by compounds which react with ·OH. It is concluded that H2O2, and perhaps O2, are involved in lignin degradation; because these species are relatively unreactive per se, their role must be indirect. Conclusions about a role for ·OH in ligninolysis could not be reached. 相似文献
13.
Serge Moukha Cécile Capdevila Laurence Lesage Michel Delattre Didier Marion Georges Corrieu Marcel Asther 《Applied microbiology and biotechnology》1991,36(2):265-269
Summary Haem protein excretion (i.e., lignin and manganese-dependent peroxidases) by Phanerochaete chrysosporium INA-12 was improved in response to an exogenous supply of phospholipid components (inositol and linoleic acid) as well as phosphatidylinositol (PI). Maximal enzyme productions were 46.3 and 21.1 nkat · ml–1, respectively, in inositol cultures after 3 days incubation. Cellular compartment determination by marker enzymes revealed that the enhancement of protein excretion with inositol was correlated with a proliferation of endoplasmic reticulum; cytosol and mitochondrial activity did not change. In contrast, in the presence of linoleic acid and PI total cellular activity was increased. In culture containing inositol, the intracellular phospholipid composition of strain INA-12 mycelium exhibited a two fold enrichment in PI at the expense of phosphatidylserine and its derives, phosphatidylethanolamine and phosphatidylcholine.
Offprint requests to: M. Asther 相似文献
14.
Physiological Aspects of Biosynthesis of Lignin Peroxidases by Phanerochaete chrysosporium 总被引:2,自引:0,他引:2 下载免费PDF全文
Methods based on UV-visible diffuse reflectance spectroscopy were used to study the physiological aspects of lignin-peroxidase biosynthesis by Phanerochaete chrysosporium. Here we introduce the use of cytochrome aa3 as an indicator of active fungal biomass and of its redox state to calculate the oxygen mass transport coefficient between the growth medium and the fungal cell interior. When lignin peroxidase biosynthesis was enhanced by the addition of Tween 80 or Tween 20 to the growth medium, a higher proportion of reduced cytochrome aa3 and a higher oxygen diffusion barrier were observed compared with control cultures. In cultures supplemented with Tween 80 or Tween 20, a higher oxygen mass transport coefficient between the growth medium and the interior of the fungal cell was also found. The beginning of the lignin peroxidase activity in these cultures was found to coincide with a temporary cessation in the dry biomass increase and a reduction in the relative active-biomass concentration. During the lignin peroxidase activity, a decrease in the intracellular pH and an increase in the growth medium pH were determined in cultures supplemented with Tween 80. 相似文献
15.
Decolorization of Azo, Triphenyl Methane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes from Phanerochaete chrysosporium 总被引:9,自引:1,他引:9 下载免费PDF全文
Pauli Ollikka Kirsi Alhonmki Veli-Matti Leppnen Tuomo Glumoff Timo Raijola Ilari Suominen 《Applied microbiology》1993,59(12):4010-4016
The ligninolytic enzyme system of Phanerochaete chrysosporium decolorizes several recalcitrant dyes. Three isolated lignin peroxidase isoenzymes (LiP 4.65, LiP 4.15, and LiP 3.85) were compared as decolorizers with the crude enzyme system from the culture medium. LiP 4.65 (H2), LiP 4.15 (H7), and LiP 3.85 (H8) were purified by chromatofocusing, and their kinetic parameters were found to be similar. Ten different types of dyes, including azo, triphenyl methane, heterocyclic, and polymeric dyes, were treated by the crude enzyme preparation. Most of the dyes lost over 75% of their color; only Congo red, Poly R-478, and Poly T-128 were decolorized less than the others, 54, 46, and 48%, respectively. Five different dyes were tested for decolorization by the three purified isoenzymes. The ability of the isoenzymes to decolorize the dyes in the presence of veratryl alcohol was generally comparable to that of the crude enzyme preparation, suggesting that lignin peroxidase plays a major role in the decolorization and that manganese peroxidase is not required to start the degradation of these dyes. In the absence of veratryl alcohol, the decolorization activity of the isoenzymes was in most cases dramatically reduced. However, LiP 3.85 was still able to decolorize 20% of methylene blue and methyl orange and as much as 60% of toluidine blue O, suggesting that at least some dyes can function as substrates for isoenzyme LiP 3.85 but not to the same extent for LiP 4.15 or LiP 4.65. Thus, the isoenzymes have different specificities towards dyes as substrates. 相似文献
16.
Weinstein DA Krisnangkura K Mayfield MB Gold MH 《Applied and environmental microbiology》1980,39(3):535-540
Phanerochaete chrysosporium metabolized the radiolabeled lignin model compounds [gamma-C]guaiacylglycerol-beta-guaiacyl ether and [4-methoxy-C]veratrylglycerol-beta-guaiacyl ether (VI) to CO(2) in stationary and in shaking cultures. CO(2) evolution was greater in stationary culture. CO(2) evolution from [gamma-C]guaiacyl-glycerol-beta-guaiacyl ether and [4-methoxy-C]veratrylglycerol-beta-guaiacyl ether in stationary cultures was two- to threefold greater when 100% O(2) rather than air (21% O(2)) was the gas phase above the cultures. CO(2) evolution from the metabolism of the substrates occurred only as the culture entered the stationary phase of growth. The presence of substrate levels of nitrogen in the medium suppressed CO(2) evolution from both substrates in stationary cultures. [C]veratryl alcohol and 4-ethoxy-3-methoxybenzyl alcohol were formed as products of the metabolism of VI and 4-ethoxy-3-methoxyphenylglycerol-beta-guaiacyl ether, respectively. 相似文献
17.
Production of Ligninases and Degradation of Lignin in Agitated Submerged Cultures of Phanerochaete chrysosporium 总被引:7,自引:15,他引:7 下载免费PDF全文
Research on the extracellular hemeprotein ligninases of Phanerochaete chrysosporium has been hampered by the necessity to produce them in stationary culture. This investigation examined the effects of detergents on development of ligninase activity in agitated submerged cultures. Results show that addition of Tween 80, Tween 20, or 3-[(3-colamidopropyl)dimethylammonio]1-propanesulfonate to the cultures permits development of ligninase activity comparable to that routinely obtained in stationary cultures. The detergent-amended cultures express the entire ligninolytic system, assayed as the complete oxidation of [14C]lignin to 14CO2. The detergent effect is evidently not merely in facilitating release of extant enzyme. Development of ligninolytic activity in the agitated cultures, as in stationary cultures, is idiophasic. Ion-exchange fast protein-liquid chromatography indicated that the heme protein profiles in agitated and stationary cultures are very similar. These findings should make it possible to scale up production of ligninolytic enzymes in stirred tank fermentors. 相似文献
18.
Linko S 《Biotechnology advances》1992,10(2):191-236
Liginin peroxidase (ligninase) of the white rot fungus Phanerochaete chrysosporium Burdsall was discovered in 1982 as a secondary metabolite. Today multiple isoenzymes are known, which are often collectively called as lignin peroxidase. Lignin peroxidase has been characterized as a veratryl alcohol oxidizing enzyme, but it is a relatively unspecific enzyme catalyzing a variety of reactions with hydrogen peroxide as the electron acceptor. P. chrysosporium ligninases are heme glycoproteins. At least a number of isoenzymes are also phosphorylated. Two of the major isoenzymes have been crystallized. Until recently lignin peroxidase could only be produced in low yields in very small scale stationary cultures owing to shear sensitivity. Most strains produce the enzyme only after grown under nitrogen or carbon limitation, although strains producing lignin peroxidase under nutrient sufficiency have also been isolated. Activities over 2000 U dm(-3) (as determined at 30 degrees to 37 degrees C) have been reported in small scale Erlenmeyer cultures with the strain INA-12 grown on glycerol in the presence of soybean phospholipids under nitrogen sufficiency. In about 8 dm(3) liquid volume pilot scale higher than 100 U dm(-3) (as determined at 23 degrees C) have been obtained under agitation with immobilized P. chrysosporium strains ATCC 24725 or TKK 20512. Good results have been obtained for example with nylon web, polyurethane foam, sintered glass or silicon tubing as the carrier. The immobilized biocatalyst systems have also made large scale repeated batch and semicontinuous production possible. With nylon web as the carrier, lignin peroxidase production has recently been scaled up to 800 dm(3) liquid volume semicontinuous industrial production process. 相似文献
19.
Lignin peroxidase-negative mutant of the white-rot basidiomycete Phanerochaete chrysosporium 总被引:9,自引:2,他引:9 下载免费PDF全文
K Boominathan S B Dass T A Randall R L Kelley C A Reddy 《Journal of bacteriology》1990,172(1):260-265
Phanerochaete chrysosporium produces two classes of extracellular heme proteins, designated lignin peroxidases and manganese peroxidases, that play a key role in lignin degradation. In this study we isolated and characterized a lignin peroxidase-negative mutant (lip mutant) that showed 16% of the ligninolytic activity (14C-labeled synthetic lignin----14CO2) exhibited by the wild type. The lip mutant did not produce detectable levels of lignin peroxidase, whereas the wild type, under identical conditions, produced 96 U of lignin peroxidase per liter. Both the wild type and the mutant produced comparable levels of manganese peroxidase and glucose oxidase, a key H2O2-generating secondary metabolic enzyme in P. chrysosporium. Fast protein liquid chromatographic analysis of the concentrated extracellular fluid of the lip mutant confirmed that it produced only heme proteins with manganese peroxidase activity but no detectable lignin peroxidase activity, whereas both lignin peroxidase and manganese peroxidase activities were produced by the wild type. The lip mutant appears to be a regulatory mutant that is defective in the production of all the lignin peroxidases. 相似文献
20.
木质素过氧化物酶基因(LipH8)的克隆及在甲醇毕赤酵母中的表达 总被引:9,自引:0,他引:9
以黄孢原毛平革菌 (Phanerochaetechrysosporium)RNA为模板 ,克隆LipH8基因片段 ,研究LipH8基因在甲醇毕赤酵母中的表达。构建了甲醇酵母表达质粒pMETA_LipH8载体 ,并将其线性化后用电穿孔法导入PichiamethabolicaPMAD16 ,部分阳性克隆的PCR结果表明LipH8基因已经整合到甲醇毕赤酵母染色体上 ,经摇瓶培养筛选出表达水平较高的酵母工程菌株。胞外木质素过氧化物酶活力达 932U L。 相似文献