首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma concentrations of testosterone and LH in the male dog   总被引:4,自引:0,他引:4  
Blood samples were withdrawn every 20 min from 3 conscious intact and 2 castrated mature males during non-consecutive periods of 12 h during the light and dark phases of the lighting schedule (intact dogs) and of 11 h during the light period (castrated dogs). In the intact dogs testosterone concentrations ranged from 0.4 to 6.0 ng/ml over the 24-h period. LH concentrations varied from 0.2 to 12.0 ng/ml. In all animals, LH peaks were clearly followed, after about 50 min, by corresponding testosterone peaks, but no diurnal rhythm could be established. LH concentrations in the castrated dogs were high (9.8 +/- 2.7 (s.e.m.) ng/ml), and still showed an episodic pattern in spite of the undetectable plasma testosterone levels.  相似文献   

2.
Interrelationships among peripheral blood concentrations of corticosteroids (CS), luteinizing hormone (LH) and testosterone (T) were evaluated over a 24-hr period in four Angus bulls (18 months of age and 450 kg in body weight). Concentrations of LH and T were determined by radioimmunoassay and concentrations of CS by competitive protein binding assay of blood samples collected via jugular cannula at hourly intervals for 24 consecutive hr. A positive temporal relationship was observed between LH and T as significant positive correlations were obtained between concentrations of LH at one hour and concentrations of T at the subsequent hour in 3 of 4 bulls. Although LH peaks preceded T peaks by 1 hr, variation in this temporal relationship was observed as LH peaks occurred which were not accompanied by T peaks in some bulls. LH peaks were usually preceded by basal or declining concentrations of CS and prolonged elevations in concentrations of CS were often coincident with basal concentrations of LH and T. Negative correlations were obtained between concentrations of CS at one hour and concentrations of LH and T at the subsequent hour. These data describe the positive regulatory role of LH in testicular T production in the bull and suggest that alterations in endogenous concentrations of CS may influence peripheral concentrations of LH and T in the bull.  相似文献   

3.
Levels of peripheral plasma testosterone and LH were studied in 4 bulls hourly during a 12 hr. sampling period at 5 times of the year. The average plasma testosterone levels were significantly lower in October (1.8 ng/ml, Ρ < 0.001) and December (2.5 ng/ml, Ρ < 0.05) than in February, June and August (3.5, 3.7 and 3.7 ng/ml respectively). LH showed a slight fluctuation during the day, with values ranging between 0.8 and 3.8 ng/ml, but underwent no significant seasonal variation. A significant increase in average plasma testosterone was observed 1 hr. after the LH peaks (P < 0.001).  相似文献   

4.
Pituitary, gonadal and adrenal activity were compared in free-living, adult African buffalo bulls during the breeding and nonbreeding seasons. Frequent blood samples were collected for 2 h from anaesthetized bulls treated intravenously with saline, gonadotrophin-releasing hormone (GnRH, 200 micrograms), human chorionic gonadotrophin (hCG, 10,000 i.u.) or adrenocorticotrophic hormone (ACTH, 1.5 mg). Electroejaculates also were collected from anaesthetized bulls during the breeding and nonbreeding seasons. Pretreatment testosterone concentrations among bulls varied more during the breeding (0.17-23.0 ng/ml) than the nonbreeding (0.15-2.21 ng/ml) season. The variation within the breeding season was attributed to 8 of 25 bulls producing higher (P less than 0.05) serum testosterone (High-T; 16.28 +/- 2.03 ng/ml) and testicular LH receptor (1.53 +/- 0.22 fmol/mg testis) concentrations compared with their seasonal counterparts (Low-T; 0.95 +/- 0.26 ng/ml; 0.38 +/- 0.04 fmol/mg) or with all bulls during the nonbreeding season (0.90 +/- 0.27 ng/ml; 0.31 +/- 0.04 fmol/mg). The magnitude of GnRH- and hCG-induced increases in serum testosterone was similar (P greater than 0.05) between Low-T bulls and bulls during the nonbreeding season. In the High-T animals treated with GnRH or hCG, serum testosterone did not increase, suggesting that secretion was already maximal. Peak serum LH concentrations after GnRH were greater (P less than 0.05) in bulls during the nonbreeding than the breeding season; FSH responses were similar (P greater than 0.05). ACTH treatment did not increase serum cortisol concentrations above the 2-fold increase measured in bulls treated with saline, hCG and GnRH (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Hourly serum samples from four adult Murrah buffalo bulls of 5 to 6 years of age were analysed for testosterone, thyroxine and triiodothyronine by radioimmunoassay during a period of 24 hours. All four bulls exhibited three episodic peaks for testosterone with some variation in the time, duration and peak concentration of the hormone. The average testosterone concentration varied from 0.30 to 3.50 ng/ml of serum. Thyroxine levels varied from 20 to 40 ng/ml of serum among the four bulls. One clear-cut peak was observed between 2 and 5 a.m. in three of the four bulls. One animal showed a characteristic peak at 10 p.m. Triiodothyronine levels ranged from 1 to 2 ng/ml of serum and followed a similar trend as that of thyroxine except for an additional small peak between 6 and 9 p.m.  相似文献   

6.
Blood samples were taken once per week for 4-7 weeks from 59 buffalo calves in 14 age groups, 1-2 months apart. Hormones were quantified by validated radioimmunoassays. Values of androstenedione and testosterone were low at birth (141.3 +/- 33.5 pg/ml and 18.0 +/- 2.9 pg/ml, respectively; mean +/- s.d.). Serum androstenedione concentrations gradually increased from birth until 8 months of age and declined (P less than 0.05) thereafter, whereas mean testosterone values were low up to 8 months and then significantly (P less than 0.05) increased as age advanced. LH concentrations averaged 2.12 +/- 0.47 ng/ml at birth. Thereafter, a decline in LH values was followed by an increase between 6 and 15 months of age. We conclude that, in buffalo bull calves, the pubertal period occurs from about 8 to 15 months of age. For pubertal buffalo bulls 15-17 months of age, serum concentrations of androstenedione, testosterone and LH were 156.9 +/- 54.6 pg/ml, 208.4 +/- 93.8 pg/ml and 2.10 +/- 0.70 ng/ml, respectively.  相似文献   

7.
Groups of bull calves received a primary immunization against testosterone (Group T; N = 7) or oestradiol-17 beta (Group E; N = 9) at 3 months of age and booster injections on four occasions at approximately 2 month intervals. Controls (Group C, N = 7) were immunized against human serum albumin alone using the same protocol. Immunity was achieved against both steroids as judged by the secondary antisteroid antibody titres in Group T (730 +/- 231; reciprocal of titre) and Group E (12,205 +/- 4366) bulls; however, peak antibody titres generally declined with successive booster injections. Mean plasma concentrations of LH, FSH and testosterone during the period from 3 to 10 months of age were higher (P less than 0.05) in Group T bulls than in Groups C and E. Group T bulls had larger testes compared with controls from 6 months of age onwards. At castration at 14 months of age, testes of Group T bulls were heavier (P less than 0.05) than those of Groups C and E (179 +/- 13, 145 +/- 8 and 147 +/- 6 g, respectively). At 10 months of age, there were no differences among treatment groups in LH responses to LHRH, but the testosterone responses were greater (P less than 0.05) in bulls in Group T (26.2 +/- 4.9 ng/ml) and Group E (16.6 +/- 1.8 ng/ml) compared with those in Group C (6.9 +/- 0.6 ng/ml). Testosterone responses to hCG determined at 13 months of age were also greater (P less than 0.05) in Groups T and E relative to controls. At 14 months of age daily sperm production rates per bull (X 10(-9)) were higher (P less than 0.10) in Group T bulls (2.2 +/- 0.1) than those in Groups C (1.6 +/- 0.2) and E (1.6 +/- 0.1). These results indicate that early immunity against testosterone is associated with increased gonadotrophin secretion and accelerated growth of the testes in prepubertal bulls. Also, chronic immunity against testosterone or oestradiol-17 beta enhances the steroidogenic response of bull testes to gonadotrophic stimulation. If the above responses observed in young bulls are shown to be sustained, then immunity against gonadal steroids early in life may confer some reproductive advantage in mature animals.  相似文献   

8.
An androgen binding protein (ABP), which binds 5alpha-dihydrotestosterone with high affinity (Ka = 0.3 x 10(9) M(-1)), has been demonstrated in testicular and epididymal cytosols of 5 young post pubertal bulls (15-17 months old) of the Montbeliarde dairy breed. Simultaneously, daily sperm production (DSP), semen output and plasma LH and testosterone concentrations (from frequent samplings) were determined. ABP levels were 21 fmoles/mg protein in testis and 59, 22 and 43 fmoles/mg, respectively, in caput, corpus and cauda epididymis. Mean DSP, per gram of testis, was 16.6 x 10(6) spermatozoa, and the mean sperm output was approximately 1.5 x 10(9) spermatozoa per ejaculate. Mean LH and testosterone levels were 1.5 ng/ml and 2.1 ng/ml, respectively. One bull (882) was clearly distinguishable from the others, in showing higher ABP and testosterone levels together with a lower daily sperm production. Results of this study may (1) suggest a physiological role of ABP in sperm epididymal maturation and (2) give a new parameter in the evaluation of individual bulls testicular function.  相似文献   

9.
To determine the effect of neutralization of inhibin on sperm output, 12 Holstein bulls were paired by birth date and weight on Day 1 of age. Each bull was actively immunized against bovine inhibin alpha1-26 gly-tyr (bINH) conjugated to human alpha globulin (HAG, n = 6 bulls) or HAG alone (controls, n = 6) at 60 days of age; booster immunizations were administered at 90, 104, 124, 270, and 395 days of age. Body weights and scrotal circumferences were measured at the time of primary immunization and at 10 days after each booster. In addition, jugular blood was obtained at 60, 70, 100, 114, 134, 280, and 405 days of age, during the 3-wk sperm collection period, and during a 6-h blood-sampling period after sperm collection to determine bINH antibody titer and concentrations of FSH, LH, testosterone, and estradiol. Beginning at 405 days of age, sperm output was measured 3 days/wk for 3 wk with two successive ejaculates collected each day for a total of 18 ejaculates per bull. During Days 60-405 of age, the increase in titer of bINH antibodies, scrotal circumference, and serum concentration of FSH was greater (p < 0.01) for the bINH-immunized compared with control bulls. There were significant (p < 0.01) pair x treatment interactions for sperm output and serum FSH and LH concentrations. Specifically, bINH-immunized bulls for four of the six pairs had nearly 50% greater serum FSH concentrations and sperm output. For the remaining two pairs, sperm output was lower and FSH was either lower or only marginally higher in the bINH-immunized bulls compared with controls. Also, the control bulls for the two remaining pairs produced more sperm than all but one bINH-immunized bull, and had markedly higher serum LH concentrations than all other bulls. To summarize, enhancement of sperm output after immunization against inhibin depends on the subsequent increment in FSH concentrations. We conclude that inhibin suppresses spermatogenesis. Thus, methods to immunoneutralize inhibin may have merit as a therapeutic route to enhance sperm production in reproductively maturing bulls.  相似文献   

10.
Testosterone was measured by radioimmunoassay in blood samples collected hourly over 10 h from two adult buffalo bulls in April, May, August and December. The basal concentrations were below 0.2 ng/ml while peak concentrations ranged from 0.35 to 1.65 ng/ml, with not more than one complete peak occurring during a 10 h period. Both bulls had similar testosterone profiles within each sampling period but differences were evident between periods, the mean concentration being highest in August and falling through December and April to the lowest levels in May. Testosterone concentrations in buffaloes are therefore lower than those in other domestic species, and appear to vary during different times of the year.  相似文献   

11.
Serum and temporal gland secretions (TGS) were obtained from mature wild African (Loxodonta africana) and captive Asian elephants (Elephas maximus). Samples were obtained from five cows and eight bulls culled for management purposes in Kruger National Park, South Africa, and from four females and two males residing at the Washington Park Zoo, Portland, Oregon. Our purpose was to describe the levels of the androgens, testosterone (T), and dihydrotestosterone (DHT), and to correlate these observations with sex, species and behavioral status. Male-female differences in serum T were pronounced in the Asian species, whereas male and female concentrations overlapped in the African elephant serum. Serum T concentrations in African females were greater than in Asian females. Serum DHT reflected T levels, except that the striking elevation of testosterone in Asian bulls during musth was not paralleled by equal increases in DHT levels. A species difference observed among males was higher serum T levels in nonmusth Asian bulls (1.84-5.35 ng/ml) compared to the levels in African bulls (0.38-0.68 ng/ml), except for one dominant African bull (6.64 ng/ml). This single African value was still considerably lower than the serum T values of the Asian males during musth. These musth values were the highest serum androgen concentrations: T was between 19 and 40 ng/ml (average 26.10 ng/ml). The TSG values of T and DHT were much higher than serum levels except in the Asian female. T/DHT ratios in TGS were more similar than in serum. One dominant African bull had a T TGS value of 78 ng/ml, which was much higher than the rest of the African males or females, but considerably lower than as Asian bull in musth (547 ng/ml). It seems apparent that a change in androgen status as reflected in serum and TGS levels of T and DHT precedes or is concomitant with overt alteration in behavior in the Asian male. The temporal gland appears to actively concentrate androgens in both African males and females, but in the Asian male the gland secretes only during musth when the greatest concentration of both T and DHT were observed. The apparent difference in the degree of temporal gland secretory activity between the two species suggests a more specific communicative function within the Asian male.  相似文献   

12.
Plasma concentrations of luteinizing hormone (LH) and testosterone were measured at 3, 8, and 11 months of age in 48 Africander cross (AX), 24 Brahman cross (BX), 21 Hereford-Shorthorn, selected (HSS) and 14 Hereford-Shorthorn, random-bred (HSR) bulls. In all breeds plasma LH was lower (P less than 0.01) at 8 months (1.7 ng/ml) than at 3 months (2.6 ng/ml) or at 11 months (2.6 ng/ml). Over all ages there were no differences among breeds in mean plasma LH (AX 2.4, BX 2.4, HSS 1.8, HSR 2.2 ng/ml) and no breed X age interactions. In contrast, plasma testosterone increased significantly (P less than 0.01) with age at a faster rate in the AX breed, resulting in a significant (P less than 0.05) breed X age interaction. Testosterone concentrations, though similar among breeds at 3 months of age (0.45 ng/ml), were much higher (P less than 0.01) by 11 months in AX (2.56 ng/ml) than in BX (1.30 ng/ml), HSS (0.78 ng/ml) or HSR (0.66 ng/ml) bulls. Although LH did not differ among the breeds studied, the more pronounced increase in testosterone with age in the Africander cross bulls is consistent with the higher level of fertility commonly observed in this breed when compared to Brahman cross and Hereford-Shorthorn breeds during natural mating in Queensland.  相似文献   

13.
Ram and bull seminal plasma, respectively, contain 0.5-20 microg PGE/ml and 5-10 ng PGE/ml. To demonstrate that PGE concentrations in the seminal plasma are related to sperm quality and could be affected by hormonal stimulation in vivo, four rams were injected with 500 IU hCG, in and out of season. The rams responded 1 week after hCG with a 1.5- to 4-fold increase in seminal plasma PGE. The PGE peak was temporally separate from the hCG-induced rise in seminal plasma testosterone which was observed after 1 day. Using a simulated cryptochid ram, peaks in seminal fluid PGE were found to be associated with increased sperm velocity and sperm counts. In bulls, PGE concentrations in the seminal plasma of good bulls were significantly higher than that found in poor and cryptorchid bulls.  相似文献   

14.
Two types of experiments were conducted to determine the relationship of changes in blood luteinizing hormone (LH) and testosterone in bulls given prostaglandin F (PGF). Episodic surges of LH and testosterone occurred in tandem, apparently at random intervals, on the average once during the 8-hr period after bulls were given saline. In contrast, after sc injection of 20 mg PGF, blood serum testosterone increased synchronously to a peak within 90 minutes four-fold greater than pre-injection values, and the testosterone surges were prolonged about three-fold compared to those in controls. Each of the PGF-induced surges of testosterone was preceded by a surge of blood serum LH which persisted for about 45 minutes and peaked at about 3 ng/ml. In a second experiment, PGF was infused (iv, 0.2 mg/min) for 20 hr; blood plasma testosterone increased from 7.0 ± 0.6 to 16.0±1.5 ng/ml within 2.5 hr and remained near this peak for 10 hr. Then testosterone gradually declined to about 9 ng/ml at the conclusion of the 20-hr infusion. These changes in testosterone were paralleled by similar changes in blood plasma LH, although LH declined 3 hr earlier than testosterone. Random episodic peaks of blood plasma LH and testosterone typical of untreated bulls resumed within 8 hr after conclusion of PGF infusion. In both experiments, the surge of testosterone after PGF was preceded by increased blood LH. We conclude that increased LH after administration of PGF probably caused the increased testosterone. However the mechanisms of these actions of PGF remain to be determined.  相似文献   

15.
Forty-four crossbred postpubertal bovine females were used to study how mating with a bull affected estradiol-17beta (E(2)) secretion and timing of the preovulatory LH surge. Estrous cycles were synchronized with two injections of prostaglandin-F(2alpha) (PGF(2alpha)) 11 d apart. Females were either isolated from males (NE) or exposed to epididectomized bulls (BE) after the second PGF(2alpha) injection. Females exposed to bulls were allowed to mate once and then were separated from the bull. Blood samples were collected at 2-h intervals from the second PGF(2alpha) injection until 12-h post injection to monitor progesterone (P(4)) and luteinizing hormone (LH) concentrations and at hourly intervals from 12 h to 60 h post-injection to monitor LH secretion and timing of the preovulatory LH surge. Samples were also collected at 4-h intervals until 60 h post-injection to monitor estrogen (E(2)) secretion. LH surges were detected in 16 and 14 of 22 females from the BE and NE groups, respectively, during the 60-h period after PGF(2alpha) injection Mean P(4) concentrations and time of P(4) decline to <1 ng/ml were not different between the two treatment groups (P>0.30). Mean E(2) concentration during the 60-h sampling period was different (P<0.003) between BE and NE groups, and a significant treatment effect (P<0.002) occurred 48 h, 52 h and 60 h after the second PGF(2alpha) injection. However, mean LH concentration before the LH surge, duration of the LH surge and peak LH concentration during the surge were not different between the BE and NE groups (P>0.40). Mean time for the second PGF(2alpha) injection to the beginning of the LH surge was 51.6 +/- 1.5 h (X +/- S E) for the females not exposed to bulls and 48.5 +/- 1.4 h for females exposed to bulls (P>0.14). In this study, the presence of and/or mating by a bull did not affect LH secretion or timing of the preovulatory LH surge after PGF(2alpha) administration.  相似文献   

16.
The magnitude of gonadotropin releasing hormone (GnRH) induced lutei nizing hormone (LH) release prior to castration, following castration, a nd during testosterone replacement in males, was compared, using 6 9-mon th-old Holstein bulls. Also, the effects of castration and testosterone replacement on patterns of episodic changes in serum LH were studied. Blood samples were collected at hourly intervals for 24 hours prior to castration, at 21 days after castration, and at 23 days postcastration a fter testosterone, 20 mg thrice daily, has been given for 24 hours. Each animal was given GnRH, 40 mcg iv, at 24 hours before castration, at 7 and 14 days after castration, and at 28 days postcastration following 6 days of testosterone treatment. GnRH caused LH release before and after castration. The LH increase was 2.5-fold at 14 days postcastratio n. Testosterone replacement did not reduce the magnitude of LH response to GnRH to precastration levels. The number of episodic increases in serum LH prior to castration averaged 3.7 daily and increased to 6.5 daily at 21 days after castration (p less than .05). The magnitude of increase in LH concentration in these epidsodic events was not affected by castration. Testosterone replacement failed to restore either the average number or change the magniture of LH increase above precastratio n levels. It was shown that LH is normally released episodically in bulls. The peaks of LH release were followed by increased testosterone in serum. Results suggest that LH release in bulls is controlled by gonadic factors other than testosterone.  相似文献   

17.
The present study investigated pulsatile and circadian variations in the circulatory levels of inhibin, gonadotrophins and testosterone. Six adult buffalo bulls (6 to 7 yr of age) were fitted with indwelling jugular vein catheters, and blood samples were collected at 2-h intervals for a period of 24 h and then at 15-min interval for 5 h. Plasma concentrations of inhibin, FSH, LH and testosterone were determined by specific radioimmunoassays. Plasma inhibin levels in Murrah buffalo bulls ranged between 0.201 to 0.429 ng/mL, with a mean of 0.278 +/- 0.023 ng/mL. No inhibin pulses could be detected during the 15-min sampling interval. Plasma FSH levels ranged between 0.95 to 3.61 ng/mL, the mean concentration of FSH over 24 h was 1.66 +/- 0.25 ng/mL. A single FSH pulse was detected in 2 of 6 bulls. The LH levels in peripheral circulation ranged between 0.92 to 9.91 ng/mL, with a mean concentration of 3.33 +/- 1.02 ng/mL. Pulsatility was detected in LH secretion with an average of 0.6 pulses/h. Plasma testosterone levels in 4 buffalo bulls ranged from 0.19 to 2.99 ng/mL, the mean level over 24 h were 1.34 +/- 0.52 ng/mL. Testosterone levels in peripheral circulation followed the LH secretory pattern, with an average of 0.32 pulses/h. The results indicate parallelism in inhibin, FSH and LH, and testosterone secretory pattern. Divergence in LH and FSH secretory patterns in adult buffalo bulls might be due to the presence of appreciable amounts of peripheral inhibin.  相似文献   

18.
Blood was collected at intervals of 29 to 31 min for 5 hr from six Angus bulls (15 mo of age) unaccustomed to capture, restraint and jugular venipuncture (stress) to evaluate temporal changes in certain hormones. Concentrations of testosterone and luteinizing hormone (LH) but not prolactin were decreased significantly after the first hour. Testosterone in plasma decreased (P < .01) about 11-fold between 0 hr and 5 hr (9.9 ± 1.7 to .85 ± .16 ng/ml) as described by equation loge testosterone = loge 2.4649 ? .5266 hr (r = .83; P < .01). Concentrations of LH in plasma remained low after the first hour and those of prolactin were high at all times and varied significantly only among bulls (27 ± 6 to 84 ± 14 ng/ml). Testosterone but not LH was measured with equal repeatability among duplicate measurements either in whole blood or plasma but its average concentration in whole blood was 66% that of plasma. This study demonstrated that sequential collection of blood from bulls unaccustomed to capture and restraint cannot be used to evaluate normal temporal variations in concentrations of testosterone.  相似文献   

19.
Scrotal circumference, growth and hormonal status after prepubertal anabolic treatments were studied in 18 conventional Belgian White Blue bulls from 3 to 13 mo of age. Young bulls were assigned into three groups: six untreated (control) bulls, six bulls implanted with 140 mg trenbolone acetate + 20 mg oestradiol (Revalor; TBA-E2) and six bulls treated with 45 mg oestradiol (Compudose; E2). Mean scrotal circumference was similar in the three groups at Day O (between 13.0 +/- 0.3 cm to 13.4 +/- 0.7 cm). From Days O to 230, scrotal circumference was strongly inhibited in implanted bulls, 23.2 +/- 1.4, 21.7 +/- 1.0 cm, respectively, for TBA-E2 and E2 at Day 210, as compared with 29.5 +/- 2.2 cm in control bulls (P < 0.001). Afterwards, differences lessened gradually and no significant divergence was observed between the three groups from Day 310. Average plasma luteinizing hormone (LH) concentrations were similar in the three groups throughout the assay. Mean testosterone levels remained extremely low upto Day 150 in TBA-E2 and E2 groups (0.6 +/- 0.6, 1.2 +/- 0.7 ng/ml, respectively) before they increased abruptly and reached values observed in control bulls at Day 180 (4.0 +/- 1.9 ng/ml). The pulsatil character of LH and testosterone profiles was abolished by the anabolic treatments. Luteinizing hormone-releasing hormone (LHRH) injection was followed by an immediate and sharp increase in plasma LH concentrations in all groups at Day 0. Anabolic treatments strongly reduced LH and testosterone responses to LHRH in treated groups.  相似文献   

20.
Testosterone concentrations in serum samples collected weekly over a 5-year period from a young adult male Asian elephant (Elephas maximus) and a young adult male African forest elephant (Loxodonta africana cyclotis) were measured by radioimmunoassay. Testosterone profiles during this maturational period were compared between the two species and related to the occurrence of musth, a recurring physiological and behavioral condition exhibited by most mature Asian, and some African, bull elephants. Musth is characterized by secretion from the bull's temporal glands, dribbling urine, and increased aggression. Serum testosterone concentrations in the Asian bull were elevated substantially between April and September each year, coincident with the presence of temporal gland secretion, urine dribbling, and aggressive behavior. Testosterone levels from April through September averaged (± SEM) 41.2 ± 2.8 ng/ml, compared to 7.6 ± 1.0 ng/ml during the rest of the year. In contrast, the testosterone profile of the African bull showed greater variation and lower levels overall, the only pattern being a tendency for levels to be lowest from November to February (avg. 6.8 ± 1.5 vs. 10.3 ± 0.8 ng/ml during the rest of the year). Temporal gland secretion and other signs of musth were first observed in this bull in 1988, at age 17. While his testosterone profile did not show a pattern comparable to that in the Asian bull, average testosterone values were significantly greater in 1988 compared to previous years. The Asian bull showed sexual attention to preovulatory (estrous) cows whether in musth or not, and exposure to estrous cows did not appear to alter the highly consistent, annual pattern of musth as evidenced in temporal gland flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号