首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have devised a procedure for the synthesis of analogs of combretastatin A-4 (CA-4) containing sulfur and selenium atoms as spacer groups between the aromatic rings. CA-4 is well known for its potent activity as an inhibitor of tubulin polymerization, and its prodrugs combretastatin A-4 phosphate (CA-4P) and combretastatin A-1 phosphate (CA-1P) are being investigated as antitumor agents that cause tumor vascular collapse in addition to their activity as cytotoxic compounds. Here we report the preparation of two sulfur analogs and one selenium analog of CA-4. All synthesized compounds, as well as several synthetic intermediates, were evaluated for inhibition of tubulin polymerization and for cytotoxic activity in human cancer cells. Compounds 3 and 4 were active at nM concentration against MCF-7 breast cancer cells. As inhibitors of tubulin polymerization, both 3 and 4 were more active than CA-4 itself. In addition, 4 was the most active of these agents against 786, HT-29 and PC-3 cancer cells. Molecular modeling binding studies are also reported for compounds 1, 3, 4 and CA-4 to tubulin within the colchicine site.  相似文献   

2.
C M Lin  H H Ho  G R Pettit  E Hamel 《Biochemistry》1989,28(17):6984-6991
Combretastatin A-4 (CS-A4), 3,4,5-trimethoxy-3'-hydroxy-4'-methoxy-(Z)-stilbene, and combretastatin A-2 (CS-A2), 3,4-(methylenedioxy)-5-methoxy-3'-hydroxy-4'-methoxy-(Z)-stilbene, are structurally simple natural products isolated from the South African tree Combretum caffrum. They inhibit mitosis and microtubule assembly and are competitive inhibitors of the binding of colchicine to tubulin [Lin et al. (1988) Mol. Pharmacol. 34, 200-208]. In contrast to colchicine, drug effects on tubulin were not enhanced by preincubating CS-A4 or CS-A2 with the protein. The mechanism of their binding to tubulin was examined indirectly by evaluating their effects on the binding of radiolabeled colchicine to the protein. These studies demonstrated rapid binding of both compounds to tubulin even at 0 degrees C (binding was complete at the earliest times examined), in contrast to the relatively slow and temperature-dependent binding of colchicine. Although the binding of the C. caffrum compounds to tubulin was quite tight, permitting ready isolation of near-stoichiometric amounts of drug-tubulin complex even in the absence of free drug, both CS-A4 and CS-A2 dissociated rapidly from tubulin in the presence of high concentrations of radiolabeled colchicine. Apparent rate constants for drug dissociation from tubulin at 37 degrees C were 3.2 x 10(-3) s-1 for CS-A4, 4.8 x 10(-3) s-1 for CS-A2, and 2.9 x 10(-5) s-1 for colchicine (half-lives of 3.6, 2.4, and 405 min, respectively). Thus, the effectiveness of the C. caffrum compounds as antimitotic agents appears to derive primarily from the rapidity of their binding to tubulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The synthesis of different 4-arylcoumarin analogues of combretastatin A-4 led to the identification of two new compounds (1 and 2) with potent cytotoxic activity on a CEM leukemia cell line and a third one completely inactive (compound 3). It was suggested that the cytotoxicity of compounds 1 and 2 may be related to their interaction with microtubules and tubulin, since these compounds inhibit microtubule formation from purified tubulin in vitro [Bailly et al. (2003) J. Med. Chem. 46 (25), 5437-5444]. In the present study, tubulin was identified as the main target of these molecules. We studied structure-activity relationships of these compounds using biological experiments specific for tubulin binding. The modification of cell cycle progression induced by compounds 1 and 2 was characterized by an apoptotic induction on human breast cells (HBL100). In addition, these two molecules disturbed cell survival by depolymerizing the microtubule network, leading to a mitotic block. We then determined the thermodynamic parameters of their interaction with purified tubulin by fluorescence spectroscopy and isothermal microcalorimetry. These results, together with a superimposition of the molecule on colchicine in the X-ray-determined three-dimensional structure model of tubulin-colchicine complex, allowed us to identify the pharmacophore of the combretastatin A-4 analogues responsible for their biological activity.  相似文献   

4.
A series of cis-restricted 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl-thiazole analogues of combretastatin A-4 were synthesized and investigated for inhibition of cell proliferation against three cancer cell lines, HT-29, MCF-7, and AGS, and a normal mouse fibroblastic cell line, NIH-3T3, using an MTT assay. The biological study showed that 2-(methylthio) substituted compounds showed little cytotoxic activity against the four cell lines. In contrast, the presence of the 2-(benzylthio) group on the thiazole ring resulted in a significant improvement in cytotoxic activity relative to the 2-(methylthio) substituted derivatives. Furthermore, the inhibition of tubulin polymerization by some potent compounds was evaluated. All the compounds studied were moderate tubulin polymerization inhibitors. The flow cytometry analysis confirmed that the synthesized compounds led to cell cycle arrest at the G2/M phase. Docking simulation was performed to insert these compounds into the crystal structure of tubulin at the colchicine binding site to determine a probable binding model.  相似文献   

5.
The combination of experimental (inhibition of colchicine binding) and computational (COMPARE, docking studies) data unequivocally identified diaryl 5-amino-1,2,4-oxadiazoles as potent tubulin inhibitors. Good correlation was observed between tubulin binding and cytostatic properties for all tested compounds with the notable exception of the lead candidate, 3-(3-methoxyphenyl)-5-(4-methoxyphenyl)amino-1,2,4-oxadiazole (DCP 10500078). This compound was found to be substantially more active in our in vitro experiments than the monofluorinated title compound, 3-(2-fluorophenyl)-5-(4-methoxyphenyl)amino-1,2,4-oxadiazole (DCP 10500067/NSC 757486), which in turn demonstrated slightly better tubulin binding activity. Comparative SAR analysis of 25 diaryl 5-amino-1,2,4-oxadiazoles with other known tubulin inhibitors, such as combretastatin A-4 (CA-4) and colchicine, provides further insight into the specifics of their binding as well as a plausible mechanism of action.  相似文献   

6.
Isocombretastatins A are 1,1-diarylethene isomers of combretastatins A. We have synthesized the isomers of combretastatin A-4, deoxycombretastatin A-4, 3-amino-deoxycombretastatin A-4 (AVE-8063), naphthylcombretastatin and the N-methyl- and N-ethyl-5-indolyl analogues of combretastatin A-4. Analogues with a 2,3,4-trimethoxyphenyl ring instead of the 3,4,5-trimethoxyphenyl ring have also been prepared. The isocombretastatins A strongly inhibit tubulin polymerization and are potent cytotoxic compounds, some of them with IC50s in the nanomolar range. This new family of tubulin inhibitors shows higher or comparable potency when compared to phenstatin or combretastatin analogues. These results suggest that one carbon bridges with a geminal diaryl substitution can successfully replace the two carbon bridge of combretastatins and that the carbonyl group of phenstatins is not essential for high potency.  相似文献   

7.
A novel series of dihydronaphthalene and benzosuberene analogs bearing structural similarity to the combretastatins in terms of 1,2-diarylethene, trimethoxyphenyl, and biaryl functionality has been synthesized. The compounds have been evaluated in regard to their ability to inhibit tubulin assembly and for their cytotoxicity against selected human cancer cell lines. From this series of compounds, benzosuberene analogs 2 and 4 inhibited tubulin assembly at concentrations comparable to that of combretastatin A-4 (CA4) and combretastatin A-1 (CA1). Furthermore, analog 4 demonstrated remarkable cytotoxicity against the three human cancer cell lines evaluated (for example GI(50)=0.0000032 microM against DU-145 prostate carcinoma).  相似文献   

8.
The combretastatins are isolated from South African tree combretum caffrum kuntze. The lead compound combretastatin A-4 has displayed remarkable cytotoxic effect in a wide variety of preclinical tumor models and inhibits tubulin polymerization by interacting at colchicine binding site of microtubule. However, the structural simplicity of C A-4 is favorable for synthesis of various derivatives projected to induce rapid and selective vascular shutdown in tumors. Majority of the molecules have shown excellent antiproliferative activity and are able to inhibit tubulin polymerization as well as possible mechanisms of action have been investigated. In this review article, the synthesis and structure-activity relationships of C A-4 and immense number of its synthetic derivatives with various modifications on the A, B-rings, bridge carbons and their anti mitotic activities are discussed.  相似文献   

9.
A series of novel 3-alkyl-1,5-diaryl-1H-pyrazoles were synthesized as combretastatin A-4 (CA-4) analogues and evaluated for antiproliferative activity against three human cancer cell lines (SGC-7901, A549 and HT-1080). Most of the target compounds displayed moderate to potent antiproliferative activity, and 7k was found to be the most potent compound. Structure-activity relationships indicated that compounds with a trimethoxyphenyl A-ring at the N-1 position of the pyrazole skeleton were more potent than those with the A-ring at the C-5 position. Tubulin polymerization and immunostaining experiments revealed that 7k potently inhibited tubulin polymerization and disrupted tubulin microtubule dynamics in a manner similar to CA-4. Computational modelling demonstrated that the binding of 7k to the colchicine binding site on microtubules may involve a similar mode as CA-4.  相似文献   

10.
Structural redesign of selected non-steroidal estrogen receptor binding compounds has previously been successful in the discovery of new inhibitors of tubulin assembly. Accordingly, tetra-substituted alkene analogues (2130) were designed based in part on combinations of the structural and electronic components of tamoxifen and combretastatin A-4 (CA4). The McMurry coupling reaction was used as the key synthetic step in the preparation of these tri- and tetra-arylethylene analogues. The structural assignment of E, Z isomers was determined on the basis of 2D-NOESY experiments. The ability of these compounds to inhibit tubulin polymerization and cell growth in selected human cancer cell lines was evaluated. Although the compounds were found to be less potent than CA4, these analogues significantly advance the known structure–activity relationship associated with the colchicine binding site on β-tubulin.  相似文献   

11.
Combretatropone is a hybrid of combretastatin and colchicine in which the o-methoxyphenol of dihydrocombretastatin A-4 is replaced by an alpha-methoxytropone. Derivatives of combretatropone have been synthesized and evaluated for antimicrotubule activity. All combretatropones were less active than the corresponding colchicine derivatives, supporting the idea that loss of ligand conformational entropy upon tubulin binding results in decreased potency for colchicinoid ligands. The structure-activity relationship of the combretatropone series was different than that of the colchicine series. These data indicate that conformationally mobile and conformationally rigid colchicinoids do not interact with the receptor site in the same manner.  相似文献   

12.
13.
The synthesis, cytotoxicity, inhibition of tubulin polymerization data and anti-angiogenetic effects of seven 1,5-disubstituted 1,2,3-triazole analogs and two 1,4-disubstituted 1,2,3-triazole analogs of combretastatin A-1 (1) are reported herein. The biological studies revealed that the 1,5-disubstituted 1,2,3-triazoles 3-methoxy-6-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diol (6), 3-methoxy-6-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diamine (8) and 5-(2,3-difluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (9) were the three most active compounds regarding inhibition of both tubulin polymerization and angiogenesis. Molecular modeling studies revealed that combretastatins 1 and 2 and analogs 5-11 could be successfully docked into the colchicine binding site of α,β-tubulin.  相似文献   

14.
Two new aryl azides, (Z)-1-(3'-azido-4'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 9 and (Z)-1-(4'-azido-3'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 5, modeled after the potent antitumor, antimitotic agent combretastatin A-4 (CA-4), have been prepared by chemical synthesis as potentially useful photoaffinity labeling reagents for the colchicine site on beta-tubulin. Aryl azide 9, in which the 3'-hydroxyl group of CA-4 is replaced by an azido moiety, demonstrates excellent in vitro cytotoxicity against human cancer cell lines (NCI 60 cell line panel, average GI50 = 4.07 x 10(-8) M) and potent inhibition of tubulin polymerization (IC50 = 1.4+/-0.1 microM). The 4'-azido analogue 5 has lower activity (NCI 60 cell line panel, average GI50 = 2.28 x 10(-6) M, and IC50 = 5.2+/-0.2 microM for inhibition of tubulin polymerization), suggesting the importance of the 4'-methoxy moiety for interaction with the colchicine binding site on tubulin. These CA-4 aryl azide analogues also inhibit binding of colchicine to tubulin, as does the parent CA-4, and therefore these compounds are excellent candidates for photoaffinity labeling studies.  相似文献   

15.
A new series of quinoline derivatives of combretastatin A-4 have been designed, synthesised and demonstrated as tubulin polymerisation inhibitors. These novel compounds showed significant antiproliferative activities, among them, 12c exhibited the most potent inhibitory activity against different cancer cell lines (MCF-7, HL-60, HCT-116 and HeLa) with IC50 ranging from 0.010 to 0.042 µM, and with selectivity profile against MCF-10A non-cancer cells. Further mechanistic studies suggest that 12c can inhibit tubulin polymerisation and cell migration, leading to G2/M phase arrest. Besides, 12c induces apoptosis via a mitochondrial-dependant apoptosis pathway and caused reactive oxygen stress generation in MCF-7 cells. These results provide guidance for further rational development of potent tubulin polymerisation inhibitors for the treatment of cancer.

Highlights

  • A novel series of quinoline derivatives of combretastatin A-4 have been designed and synthesised.
  • Compound 12c showed significant antiproliferative activities against different cancer cell lines.
  • Compound 12c effectively inhibited tubulin polymerisation and competed with [3H] colchicine in binding to tubulin.
  • Compound 12c arrested the cell cycle at G2/M phase, effectively inducing apoptosis and inhibition of cell migration.
  相似文献   

16.
A total of 20 novel 1,3,4-oxadiazoline analogs (6a-6t) of combretastatin A-4 with naphthalene ring were designed, synthesized, and evaluated for biological activities as potential tubulin polymerization inhibitors. Among these compounds, 6n showed the most potent antiproliferative activities against multiple cancer cell lines and retained the microtubule disrupting effects. Docking simulation was performed to insert compound 6n into the crystal structure of tubulin to determine the probable binding model. These results indicated oxadiazoline compounds bearing the naphthyl moiety are promising tubulin inhibitors.  相似文献   

17.
A novel series of combretastatin A-4 heterocyclic analogues was prepared by replacement of the B ring with indole, benzofurane or benzothiophene, attached at the C2 position. These compounds were evaluated for their abilities to inhibit tubulin assembly: derivative cis 3b, having a benzothiophene, showed an activity similar to those of colchicine or deoxypodophyllotoxine. The antiproliferative and antimitotic properties of cis 3b against keratinocyte cancer cell lines were also evaluated and the intracellular organization of microtubules in the cells after treatment with both stereoisomers of 3b was also determined, using confocal microscopy.  相似文献   

18.
The 3-hydroxy-4-methoxyphenyl ring of combretastatin A-4 can be replaced by a 2-naphthyl moiety without significant loss of cytotoxicity and inhibition of tubulin polymerization potency. In this paper we show that the 6- or 7-quinolyl systems can in turn replace both cyclic moieties, keeping in the first case most of the potency as cytotoxic agent and in the second case as inhibitor of tubulin polymerization, related to the activities displayed by model compounds.  相似文献   

19.
A series of azetidin-2-ones substituted at positions 1, 3 and 4 of the azetidinone ring scaffold were synthesised and evaluated for antiproliferative, cytotoxic and tubulin-binding activity. In these compounds, the cis double bond of the vascular targeting agent combretastatin A-4 is replaced with the azetidinone ring in order to enhance the antiproliferative effects displayed by combretastatin A-4 and prevent the cis/trans isomerisation that is associated with inactivation of combretastatin A-4. The series of azetidinones was synthetically accessible via the Staudinger and Reformatsky reactions. Of a diverse range of heterocyclic derivatives, 3-(2-thienyl) analogue 28 and 3-(3-thienyl) analogue 29 displayed the highest potency in human MCF-7 breast cancer cells with IC(50) values of 7 nM and 10nM, respectively, comparable to combretastatin A-4. Compounds from this series also exhibited potent activity in MDA-MB-231 breast cancer cells and in the NCI60 cell line panel. No significant toxicity was observed in normal murine breast epithelial cells. The presence of larger, bulkier groups at the 3-position, for example, 3-naphthyl derivative 21 and 3-benzothienyl derivative 26, resulted in relatively lower antiproliferative activity in the micromolar range. Tubulin-binding studies of 28 (IC(50)=1.37 μM) confirmed that the molecular target of this series of compounds is tubulin. These novel 3-(thienyl) β-lactam antiproliferative agents are useful scaffolds for the development of tubulin-targeting drugs.  相似文献   

20.
We have synthesized a series of polymethoxylated rigid analogs of combretastatin A-4 which contain a benzoxepin ring in place of the usual ethylene bridge present in the natural combretastatin products. The compounds display antiproliferative activity when evaluated against the MCF-7 and MDA human breast carcinoma cell lines. 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-2,3-dihydro-benzoxepine (11g) was found to be the most potent product when evaluated against the MCF-7 breast cancer cell line. A brief computational study of the structure–activity relationship for the synthesized compounds is presented. These 4,5-diarylbenzoxepins are identified as potentially useful scaffolds for the further development of antitumor agents which target tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号