首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces symptoms resembling Parkinson's disease in humans, acts both as a substrate and an enzyme-activated irreversible inhibitor of the B-form of monoamine oxidase from rat liver. Analysis of the inhibitory process showed the compound to be considerably more efficient as a substrate than as an irreversible inhibitor, with about 17000 mol of product being formed per mol of enzyme inactivated. The half-time of the inhibitory process was about 22 min. With the A-form of the enzyme, the compound had a lower Km value and a considerably lower maximum velocity than the corresponding values obtained with the B-form. Under the conditions used in the present work the inhibition of the A-form of the enzyme was largely reversible.  相似文献   

2.
Inhibition of monoamine oxidase by substituted hydrazines   总被引:1,自引:1,他引:0  
1. The initial rate of inhibition of monoamine oxidase by phenethylhydrazine was shown to be similar, in pH-dependence and kinetic properties, to the oxidation of that compound by monoamine oxidase. 2. The time-course of irreversible inhibition of monoamine oxidase by phenethylhydrazine lags behind that of reversible inhibition. 3. Hydralzine was shown to be a reversible competitive inhibitor of monoamine oxidase, but phenylhydrazine is an irreversible inhibitor. Inhibition by the latter compound is not affected by the absence of oxygen, and the presence of substrate exerts no protective action. 4. Hydrazine does not inhibit monoamine oxidase unless a substrate and oxygen are present. 5. Phenethylidenehydrazine was found to be a time-dependent inhibitor of monoamine oxidase and the rate of inhibition was hindered by increasing oxygen concentration. 6. A mechanism for the inhibition of the enzyme by phenethylhydrazine is proposed in which the product of oxidation of this compound is a potent reversible inhibitor and an irreversible inhibitor of the enzyme. A computer simulation of such a mechanism predicts time-courses of inhibition that are in reasonable agreement with those observed experimentally.  相似文献   

3.
A series of bis-[(m-hydroxyphenyl)trimethylammonium iodide] esters of polymethylenedicarbamic acids and a number of (m-hydroxyphenyl)trimethylammonium iodide esters of straight-chain N-alkylcarbamic acids have been examined as inhibitors of acetylcholinesterase from fly head. Evidence is presented suggesting that inhibition of acetylcholinesterase by the bis-carbamates is due to carbamoylation of the enzyme, as is generally thought to be the case with esters of N-alkylcarbamic acids. Inhibition is irreversible. The (m-hydroxyphenyl)trimethylammonium iodide ester of N-hexylcarbamic acid also inhibits fly head acetylcholinesterase irreversibly. There is therefore no need to implicate a second functional group in bis-carbamate esters to explain the irreversible inhibition of the enzyme. An unusual feature of the inhibition is that inhibition lines do not pass through 100% enzyme activity at t=0, except for rather low concentrations of inhibitor (<10mum for the octamethylene compound). Also, inhibition lines tend towards a maximum slope as inhibitor concentration is increased. The first observation indicates complex-formation, even in the presence of high concentrations of substrate, and by using measurements of inhibition at relatively high inhibitor concentrations, affinity constants K'(a) have been calculated. K'(a) varies from 0.1mum for the dodecamethylene compound to 10mum for the tetramethylene compound, in the presence of 3.75mm-acetylthiocholine, indicating high affinity for the enzyme. The second observation shows that, owing to this high affinity, the enzyme becomes saturated with inhibitor under the experimental conditions employed, and from the limiting slope values of the carbamoylation rate constant (k(2)) have been calculated. k(2) varies from 0.15min(-1) for the tetramethylene compound to 1min(-1) for the decamethylene compound. Variations of potency in this series are therefore mainly due to changes in affinity (100-fold) rather than in carbamoylation rate (sevenfold). The observation that large molecules may acylate the enzyme raises certain problems, which are discussed.  相似文献   

4.
It was previously shown that 5-hexyne-1,4-diamine is a potent enzyme-activated irreversible inhibitor of mammalian ornithine decarboxylase. However this compound has secondary pharmacological effects owing to its in vivo oxidation to 4-aminohex-5-ynoic acid, an irreversible inhibitor of 4-aminobutyrate aminotransferase. The first step of this oxidation is catalysed by mitochondrial monoamine oxidase. The monomethyl and dimethyl analogues of 5-hexyne-1,4-diamine, i.e. 6-heptyne-2,5-diamine and 2-methyl-6-heptyne-2,5-diamine, which cannot be substrate of monoamine oxidase, were tested as selective irreversible inhibitors of ornithine decarboxylase. Our results demonstrate that (2R,5R)-6-heptyne-2,5-diamine is greater than 10 times more potent, both in vitro and in vivo, than α-difluoromethylornithine, the most widely used irreversible inhibitor of this enzyme.  相似文献   

5.
It has been suggested (Chiba et al., Biochem. Biophys. Res. Communs. (1984) 120, 574) that the neurotoxic effects of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which causes Parkinsonian symptoms in humans and other primates, are due to compounds resulting from the oxidation of MPTP by monoamine oxidase B in the brain. We reported recently that both monoamine oxidase A and B oxidize MPTP to MPDP+, the 2,3-dihydropyridinium form and that the reaction is accompanied by time-dependent, irreversible inactivation of the enzymes. Of the two forms of monoamine oxidase, the B enzyme oxidizes MPTP more rapidly and is also more sensitive to inactivation. We now wish to report that MPTP, as well as its oxidation products, MPDP+ and MPP+, the 4-phenylpyridinium form, are also potent reversible, competitive inhibitors of both monoamine oxidase A and B, particularly the former, and that the order of inhibition for the A enzyme is MPDP+ greater than MPP+ greater than MPTP, while for the B enzyme MPTP greater than MPDP+ greater than MPP+. We further report on the spectral changes and isotope incorporation accompanying the irreversible inactivation.  相似文献   

6.
We investigated the biosynthetic pathway for 2-phenylethanol, the dominant floral scent compound in roses, using enzyme assays. L-[(2)H8] Phenylalanine was converted to [(2)H8] phenylacetaldehyde and [(2)H8]-2-phenylethanol by two enzymes derived from the flower petals of R. 'Hoh-Jun,' these being identified as pyridoxal-5'-phosphate-dependent L-aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). The activity of rose petal AADC to yield phenylacetaldehyde was nine times higher toward L-phenylalanine than toward its D-isomer, and this conversion was not inhibited by iproniazid, a specific inhibitor of monoamine oxidase. Under aerobic conditions, rose petal AADC stoichiometrically produced NH3 together with phenylacetaldehyde during the course of decarboxylation and oxidation, followed by the hydrolysis of L-phenylalanine. Phenylacetaldehyde was subsequently converted to 2-phenylethanol by the action of PAR. PAR showed specificity toward several volatile aldehydes.  相似文献   

7.
The irreversible inhibition of the monoamine oxidase (MAO) activity within monoaminergic neurons in the rat brain 24 h after single or repeated administration of (E)-beta-fluoromethylene-m-tyrosine (FMMT, MDL 72394) was examined. The enzyme activity was determined by incubating synaptosome-rich homogenates of hypothalamus or striatum with low concentrations of 5-[14C]hydroxytryptamine (5-HT), [14C]noradrenaline (NA), or [14C]dopamine (DA) in the absence and presence of the selective amine uptake inhibitors citalopram (5-HT), maprotiline (NA), and GBR 12909 (DA). After a single subcutaneous injection of FMMT, the inhibition of MAO within the noradrenergic and dopaminergic neurons was significant but only slightly greater than that outside these neurons. The opposite relationship was observed for the serotonergic neurons. After 7 days' treatment of rats with carbidopa, 20 mg/kg p.o., + FMMT once daily, the preference for the inhibition of MAO within the noradrenergic and dopaminergic neurons was accentuated further. The inhibition outside the serotonergic neurons was still greater than within these neurons. The NA uptake inhibitor CPP 199 antagonized the selective inhibition of MAO within the noradrenergic neurons, which indicates that this preference is due to the accumulation of the active metabolite (E)-beta-fluoromethylene-m-tyramine by the NA transporter.  相似文献   

8.
The phenomenology of inhibition of FAD-containing type A monoamine oxidase by clorgyline solutions containing negligibly small amounts of clorgyline that are insufficient for stoichiometric covalent blocking of a perceptible amount of the coenzyme was studied. The nature of this phenomenon consists in the fact that at monoamine oxidase concentrations of about 10(-8) M, more than 50% of the enzyme activity in inhibited by clorgyline (less than or equal to 10(-10) M), although is accordance with a well-defined mechanism after monoamine oxidase-catalyzed tautomerization clorgyline presumably interacts with FAD at a 1:1 stoichiometric ratio. This effect termed as secondary inhibition seems to be induced not by clorgyline proper, not by changes in the solvent induced by this compound. In other words, clorgyline may initiate the synthesis of a new hypothetical inhibitor (IIC) in aqueous media which causes a reversible inhibition of the same specific inhibitory site of the enzyme. This site is responsible for the initial binding of acetylene inhibitors and catalyzes the formation of their allenic derivatives.  相似文献   

9.
A comparative study of substrate specificity of monoamine oxidase (MAO) in mitochondria of liver of the Pacific squid Todarodes pacificus and of Wistar rats is carried out. It is revealed that the squid liver MAO, unlike the rat liver MAO, is capable of deaminating not only tyramine, serotonin, and benzylamine, but also histamine. The squid liver MAO activity in relation to all studied substrates is approximately 10 times lower, while the sorption ability, several tens times lower, than the rat liver MAO. Semicarbazide, a classic inhibitor of diamine oxidase, at a concentration 1 × 10–2 M did not inhibit the catalytic activity of both studied enzymes. The specificity of action of an irreversible inhibitor, proflavine, is established, which was seen at deamination of various substrates by the squid liver MAO to the greater degree, than by the rat liver MAO. The values of the bimolecular rate constant of the irreversible inhibition (k II) by proflavine were 2.5–20-fold higher (depending on substrate) in the case of the squid liver MAO, than of the rat liver MAO. A suggestion is put forward about the probable presence of several centers of substrate binding in the enzyme of the studied marine invertebrate, like in the mammalian enzyme.  相似文献   

10.
Incubation of isolated rat liver mitochondria with the pure rabbit reticulocyte lipoxygenase caused a time-dependent inactivation of the monoamine oxidase activities A and B. Furthermore, a conversion of the monoamine oxidase into a diamine oxidase was observed. The inactivation kinetics for both monoamine oxidase activities A and B showed a biphasic behaviour; a reversible short-term inhibition during the first 5 min of incubation was followed by an irreversible inactivation of the enzyme. The kinetic studies suggest that the slow irreversible inactivation of the monoamine oxidase activities is due to secondary reactions subsequent to the initial attack of the lipoxygenase on the mitochondrial outer membrane. During the interaction of the lipoxygenase with the mitochondria, only about 1.5% of the polyenoic fatty acids present in the mitochondrial membranes were oxygenated. The predominant products formed during the interaction of the lipoxygenase with the mitochondrial membranes are (13S)-hydro(pero)xy-9Z,11E-octadecadienoic acid and (15S)-hydro(pero)xy-5,8,11,13(Z,Z,Z,E)-eicosatetraenoic acid.  相似文献   

11.
The reaction of 2-chloro-2-phenylethylamine with monoamine oxidase B was investigated to study the mechanism of this enzyme and its inactivation by this compound. 2-Chloro-2-phenylethylamine is a substrate with a Km of 30 microM and a turnover number of 80 min-1 at pH 6.5 at 30 degrees C. Incubation of 2-chloro-2-phenylethylamine with the enzyme led to the normal oxidation product, 2-chloro-2-phenylacetaldehyde, but only traces (0.25 mol%) of 2-phenylacetaldehyde, the product anticipated if the oxidation of substrate involved a stabilized carbanion at C-1 and elimination of chloride ion. These data suggest that a carbanion is not a likely intermediate in the oxidation of amines by monoamine oxidase. During the mechanistic studies we noted time-dependent inactivation of monoamine oxidase B by 2-chloro-2-phenylethylamine under both aerobic and anaerobic conditions. Inactivation was not reversible. Aerobically 2-chloro-2-phenylethylamine is oxidized to 2-chloro-2-phenylacetaldehyde which covalently modifies the enzyme (tau 1/2 = 40 min). Benzyl alcohol, a substrate analog, gives substantial protection against inactivation under aerobic conditions (tau 1/2 = 320 min), suggesting that an active site residue is modified. Anaerobic reaction of 2-chloro-2-phenylethylamine with monoamine oxidase B probably proceeds by direct alkylation of an enzyme residue (tau 1/2 = 140 min). Reduction with [3H]NaBH4 of the inactivated enzyme gave from 0 to 0.7 and from 4.5 to 5.6 mol of hydride incorporation for enzyme inactivated anaerobically and aerobically, respectively. The latter results are in agreement with inactivation by unmodified inhibitor and inactivation by oxidized inhibitor for the anaerobic and aerobic reactions, respectively. It is suggested that 2-chloro-2-phenylethylamine or its oxidation product 2-chloro-2-phenylacetaldehyde may serve as an active site affinity reagent for monoamine oxidase.  相似文献   

12.
Abstract: MDL 72145, ( E )-2-(3',4'-dimethoxyphenyl)-3-fluoroallylamine hydrochloride, was designed and synthesised as a potential enzyme-activated irreversible inhibitor of monoamine oxidase (MAO). In vitro , the compound displayed time-dependent pseudo-first-order irreversible inhibitory characteristics with high selectivity for the B form of rat brain mitochondrial MAO At 10°C the Kt and T50 values for the B enzyme were 40 μ M and 1.7 min, respectively, while these same kinetic constants for the A enzyme were 131 μ M and 14.5 mm, respectively. Selective protection against inactivation of the two forms of MAO by MDL 72145 was obtained by preincu-bating the enzyme with suitable concentrations of the selective A and B substrates, 5-hydroxytryptamine and benzylamine.  相似文献   

13.
Although a potent irreversible inhibitor of high-affinity choline transport in rat brain synaptosomes, choline mustard aziridinium ion (ChM Az) appeared to be a relatively weak inhibitor of choline acetyltransferase (ChAT) in rat brain homogenates, and evidence for irreversible binding of this compound to the enzyme had not been established. Accordingly, the irreversible inactivation of partially purified rat brain ChAT by ChM Az was studied. This compound is a rather weak inhibitor of the enzyme, with 50% inhibition of ChAT activity achieved following 30 min incubation at 37 degrees C with 0.6 mM ChM Az. This result indicates that although ChM Az has affinity for many nucleophiles there was little diluting effect of the inhibitor in the crude brain homogenate which could be attributed to such reactions (50% inhibition caused by 1.8 mM ChM Az following 10 min incubation). Although the initial binding of ChM Az to ChAT may be of a competitive nature, irreversible bond formation resulted. The time-dependent alkylation reaction conformed to pseudo-first-order kinetics with an observed forward rate constant (kobs) of 0.173 min-1; the half-time (t 1/2) for irreversible binding was about 4 min. The irreversible inactivation of ChAT by ChM Az would appear to be slower than the alkylation of high-affinity choline carriers in synaptosomes by this compound, and the relatively weak inhibitory action of ChM Az against either partially purified ChAT or ChAT activity in crude rat brain homogenates is in striking contrast to previous evidence that ChAT in intact synaptosomes was inhibited irreversibly by lower concentrations of the inhibitor.  相似文献   

14.
M Tagaya  K Yamano  T Fukui 《Biochemistry》1989,28(11):4670-4675
Pyridoxal kinase from pig liver has been purified 10,000-fold to apparent homogeneity. The enzyme is a dimer of subunits of Mr 32,000. The enzyme is strongly inhibited by the product pyridoxal 5'-phosphate. Liver pyridoxamine phosphate oxidase, another enzyme involved in the biosynthesis of pyridoxal 5'-phosphate, is also strongly inhibited by this compound [Wada, H., & Snell, E. E. (1961) J. Biol. Chem. 236, 2089-2095]. Thus, the biosynthesis of pyridoxal 5'-phosphate in the liver might be regulated by the product inhibition of both pyridoxamine phosphate oxidase and pyridoxal kinase. Kinetic studies revealed that the catalytic reaction of liver pyridoxal kinase follows an ordered mechanism in which pyridoxal and ATP bind to the enzyme and ADP and pyridoxal 5'-phosphate are released from the enzyme, in this order. Adenosine tetraphosphopyridoxal was found to be a slow-binding inhibitor of pyridoxal kinase. Pre-steady-state kinetics of the inhibition revealed that the inhibitor and the enzyme form an initial weak complex prior to the formation of a tighter and slowly reversing complex. The overall inhibition constant was 2.4 microM. ATP markedly protects the enzyme against time-dependent inhibition by the inhibitor, whereas another substrate pyridoxal affords no protection. By contrast, adenosine triphosphopyridoxal is not a slow-binding inhibitor of this enzyme.  相似文献   

15.
Abstract: Studies were designed to evaluate specificity of the transmitter amines serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA), as well as the trace amines p -tyramine ( p -TA) and β -phenylethylamine (PEA) for types A and B monoamine oxidase (MAO) in rat striatum. 5-HT was found to be a specific substrate for the type A enzyme. However, the specificity of PEA for the type B enzyme was found to be concentration-dependent. When low concentrations of PEA and 5-HT were used to measure type B and type A activities, respectively, both clorgyline and deprenyl were highly selective for the sensitive form of MAO in vivo. However, as the concentration of PEA was increased, the type B inhibitor deprenyl became less effective in preventing deamination of PEA. Conversely, the type A inhibitor clorgyline became more effective in this regard. Kinetic analysis following selective in vivo inhibition showed PEA deamination by both forms of MAO with a 13-fold greater affinity for the type B enzyme. In vivo dose-response curves obtained with the common substrates DA and p -TA showed approximately 20% deamination by the B enzyme. Kinetic values for DA and p -TA deamination in in vivo -treated tissue possessing only type A or type B MAO activity, revealed a 2.5-fold greater affinity for the type A enzyme. These studies show the importance of concentration on substrate specificity in striatal tissue. The results obtained characterize the common substrate properties of DA and p -TA as well as of PEA in rat striatum. In addition, the presence of regional specificity for 5-HT deamination by only type A MAO is demonstrated.  相似文献   

16.
Arylazido-beta-alanine ADP-ribose, a photoreactive analogue of ADP-ribose, was synthesized. In the dark, arylazido-beta-alanine ADP-ribose acts as a competitive reversible inhibitor of mitochondrial NADH-ubiquinone reductase with a K(i) of 37 microM. Upon photolysis, arylazido-beta-alanine ADP-ribose is converted to a potent irreversible active site-directed inhibitor of the enzyme. Photo-induced inhibition of membrane-bound NADH-ubiquinone reductase by arylazido-beta-alanine ADP-ribose is incomplete and results in a 20-fold reduction of the NADH oxidase and 2.5-fold reduction of the energy-dependent NAD(+) reductase activities. The arylazido-beta-alanine ADP-ribose resistant activities (direct and reverse) of the enzyme are characterized by a two orders of magnitude lower affinity to the corresponding substrates compared to those of the uninhibited NADH-ubiquinone reductase. A different kinetic behavior of the inhibited and native enzyme can be explained by invoking the two catalytically competent nucleotide-binding sites model of NADH-ubiquinone reductase.  相似文献   

17.
1. The specific activity of monoamine oxidase was found to be greater in liver mitochondria from ob/ob mice than from lean mice. The activities of marker enzymes were similar in both tissues. 2. Experiments with various substrates (5-hydroxytryptamine, benzylamine and tyramine) and inhibitors (clorgyline and deprenyl) indicated that, unlike rat liver mitochondria, mouse liver mitochondria contain a predominance of the B-form of monoamine oxidase. 3. The Km values for lean and ob/ob mice were the same for any given substrate and were in the increasing order 5-hydroxytryptamine less than tyramine less than benzylamine. Vmax. was approximately 50% greater in obese than in lean mice. 4. Extraction of liver mitochondria with acetone/water or acetone/water/NH3 to remove lipids decreased the enzyme activity relatively more in obese- than in lean-mice preparations, but residual activity was the same in both preparations.  相似文献   

18.
The comparison of the Km and Vmax values for the primers was carried out. The primers were either completely complementary to the template or contained non-complementary bases at different positions with respect to the 3'-end. The addition of NaF, selectively inhibiting 3'----5'-exonuclease activity of the enzyme, was shown to result in the increase of Vmax values by 10% and 30% for complementary and partially complementary primers, respectively, Km values of the latters being unchanged. Km values for d[(pT)10pC] is about 146-fold greater than that for d[(pT)11]. Km values for d[(pT)7pC(pT)2] (20 microM) and d[[(pT)2pC]3pT] (20 microM); d[(pT)4pC(pT)5] (5.0 microM); d[(pC)(pT)7] (1.3 microM) and d[(pT)2pC(pT)7] (1.2 microM) are comparable with those for d[(pT)2] (22 microM), d[(pT)5] (4.1 microM) and d[(pT)7] (1.2 microM), respectively, but not with the decathymidylate d[(pT)10] (0.2 microM). We suggest that it is not the length of the primers but the number of bases in the fragment beginning with the first nucleotide from the 3'-end and ending in the non-complementary base, that determines the efficiency of interaction of the primers containing non-complementary bases with the enzyme. The addition of one link to d(pT)n (n less than or equal to 10) resulted in a 1.8-fold increase in the affinity. When 11 less than n less than 25 the affinity is decreased so that d(pT)22-23 have minimal affinity to the enzyme. The primers containing more than 50 units were found to have about the same affinity (calculated on base concentration) as d(pT)10-11.  相似文献   

19.
Schmidt DM  McCafferty DG 《Biochemistry》2007,46(14):4408-4416
The catalytic domain of the flavin-dependent human histone demethylase lysine-specific demethylase 1 (LSD1) belongs to the family of amine oxidases including polyamine oxidase and monoamine oxidase (MAO). We previously assessed monoamine oxidase inhibitors (MAOIs) for their ability to inhibit the reaction catalyzed by LSD1 [Lee, M. G., et al. (2006) Chem. Biol. 13, 563-567], demonstrating that trans-2-phenylcyclopropylamine (2-PCPA, tranylcypromine, Parnate) was the most potent with respect to LSD1. Here we show that 2-PCPA is a time-dependent, mechanism-based irreversible inhibitor of LSD1 with a KI of 242 microM and a kinact of 0.0106 s-1. 2-PCPA shows limited selectivity for human MAOs versus LSD1, with kinact/KI values only 16-fold and 2.4-fold higher for MAO B and MAO A, respectively. Profiles of LSD1 activity and inactivation by 2-PCPA as a function of pH are consistent with a mechanism of inactivation dependent upon enzyme catalysis. Mass spectrometry supports a role for FAD as the site of covalent modification by 2-PCPA. These results will provide a foundation for the design of cyclopropylamine-based inhibitors that are selective for LSD1 to probe its role in vivo.  相似文献   

20.
Abstract: Cimoxatone is a fully reversible inhibitor selective for the A form of monoamine oxidase. The inhibition is so potent against this enzyme form that it acts as a tight-binding inhibitor. Use of this inhibitor indicates that in rat brain homogenates the concentration of monoamine oxidase A is approximately 8–11 pmol-mg protein−1. Values similar to this were obtained by clor-gyline titration and both methods gave values similar to those found with a [3H]harmaline binding assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号