首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study extends the two-dimensional analysis of peristaltic motion by Fung and Yih to include an elastic or viscoelastic wall, and a Poiseuille flow. This fluid-solid interaction problem is investigated by considering equations of motion of both the fluid and the deformable boundaries. The wall characteristics appear in their equations of motion, which are solved to represent boundary conditions of fluid motion. The influence of Poiseuille flow on pure peristalisis is also investigated.

The phenomenon of the ‘mean flow reversal’ is found to exist both at the center and at the boundaries of the channel. When the walls of the channel are elastic, pure peristalsis involves flow reversal only at the center. This position may shift drastically to the boundaries, if viscous damping forces are considered.  相似文献   


2.
Recruitment of stretch-activated channels, one of the mechanisms of mechano-electric feedback, has been shown to influence the stability of scroll waves, the waves that underlie reentrant arrhythmias. However, a comprehensive study to examine the effects of recruitment of stretch-activated channels with different reversal potentials and conductances on scroll wave stability has not been undertaken; the mechanisms by which stretch-activated channel opening alters scroll wave stability are also not well understood. The goals of this study were to test the hypothesis that recruitment of stretch-activated channels affects scroll wave stability differently depending on stretch-activated channel reversal potential and channel conductance, and to uncover the relevant mechanisms underlying the observed behaviors. We developed a strongly-coupled model of human ventricular electromechanics that incorporated human ventricular geometry and fiber and sheet orientation reconstructed from MR and diffusion tensor MR images. Since a wide variety of reversal potentials and channel conductances have been reported for stretch-activated channels, two reversal potentials, −60 mV and −10 mV, and a range of channel conductances (0 to 0.07 mS/µF) were implemented. Opening of stretch-activated channels with a reversal potential of −60 mV diminished scroll wave breakup for all values of conductances by flattening heterogeneously the action potential duration restitution curve. Opening of stretch-activated channels with a reversal potential of −10 mV inhibited partially scroll wave breakup at low conductance values (from 0.02 to 0.04 mS/µF) by flattening heterogeneously the conduction velocity restitution relation. For large conductance values (>0.05 mS/µF), recruitment of stretch-activated channels with a reversal potential of −10 mV did not reduce the likelihood of scroll wave breakup because Na channel inactivation in regions of large stretch led to conduction block, which counteracted the increased scroll wave stability due to an overall flatter conduction velocity restitution.  相似文献   

3.
The lymphatic system is an extensive vascular network featuring valves and contractile walls that pump interstitial fluid and plasma proteins back to the main circulation. Immune function also relies on the lymphatic system's ability to transport white blood cells. Failure to drain and pump this excess fluid results in edema characterized by fluid retention and swelling of limbs. It is, therefore, important to understand the mechanisms of fluid transport and pumping of lymphatic vessels. Unfortunately, there are very few studies in this area, most of which assume Poiseuille flow conditions. In vivo observations reveal that these vessels contract strongly, with diameter changes of the order of magnitude of the diameter itself over a cycle that lasts typically 2-3s. The radial velocity of the contracting vessel is on the order of the axial fluid velocity, suggesting that modeling flow in these vessels with a Poiseuille model is inappropriate. In this paper, we describe a model of a radially expanding and contracting lymphatic vessel and investigate the validity of assuming Poiseuille flow to estimate wall shear stress, which is presumably important for lymphatic endothelial cell mechanotransduction. Three different wall motions, periodic sinusoidal, skewed sinusoidal and physiologic wall motions, were investigated with steady and unsteady parabolic inlet velocities. Despite high radial velocities resulting from the wall motion, wall shear stress values were within 4% of quasi-static Poiseuille values. Therefore, Poiseuille flow is valid for the estimation of wall shear stress for the majority of the lymphangion contractile cycle.  相似文献   

4.
The flow in the basilar artery arises from the merging of the flows from the two vertebral arteries. This study deals with the question whether a parabolic (Poiseuille) profile will have been established before the basilar artery divides into both posterior cerebral arteries. The inlet length (that is, the downstream distance needed for the flow to become approximately equal to the limiting Poiseuille flow) and velocity profiles have been computed from two- and three-dimensional mathematical models in which flow pulsatility and vessel wall distensibility have been neglected and the complex geometry of the junction has been taken into account in a simplified form. The results show that the flow at the end of the basilar artery is far from being parabolic and that an asymmetry in the entrance flow will be carried along towards the end of the basilar artery, thus affecting flows in the circle of Willis.  相似文献   

5.
Three-dimensional (3D) focusing of particles in microchannels has been a long-standing issue in the design of biochemical/biomedical microdevices. Current microdevices for 3D cell or bioparticle focusing involve complex channel geometries in view of their fabrication because they require multiple layers and/or sheath flows. This paper proposes a simple method for 3D focusing of red blood cells (RBCs) in a single circular microcapillary, without any sheath flows, which is inspired from the fluid dynamics phenomenon in that a spherical particle lagging behind a Poiseuille flow migrates toward and along the channel axis. More explicitly, electrophoresis of RBCs superimposed on the pressure-driven flow is utilized to generate an RBC migration mode analogous to this phenomenon. A particle-tracking scheme with a sub-pixel resolution is implemented to spatially position red blood cells flowing through the channel, so that a probability density function (PDF) is constructed to evaluate the tightness of the cell focusing. Above a specific strength of the electric field, approximately 90% of the sheep RBCs laden in the flow are tightly focused within a beam diameter that is three times the cell dimension. Particle shape effect on the focusing is discussed by making comparisons between the RBCs and the spherical particles. The lateral migration velocity, predicted by an existing theoretical model, is in good agreement with the present experimental data. It is noteworthy that 3D focusing of non-spherical particles, such as RBCs, has been achieved in a circular microchannel, which is a significant improvement over previous focusing methodologies.  相似文献   

6.
An analytical model (Datta and Kotamarthi, 1990) for the electrokinetic dispersion coefficient in capillary electrophoresis (CE), for the case of low zeta-potential, that accounts for the effects of pressure-driven and/or electroosmotic flow of the elutant, is utilized here to theoretically explore the performance of CE in terms of plate height, plate number, peak resolution, resolving power, and the time of analysis. Practical operating conditions for the voltage gradient and Poiseuille flow fraction, v, are explored that optimize CE column performance. The implications of the results in the rational design of CE columns are discussed. It is also shown that the superposition of Poiseuille flow on the natural electroosmotic flow, while allowing greater freedom in the choice of elutant velocity, does not always cause increased dispersion.  相似文献   

7.
MHD micro-pumps circumvent the wear and fatigue caused by high pressure-drop across the check valves of mechanical micro-pumps in micro-fluidic systems. Early analyses of the fluid flow for MHD micro-pumps were mostly made possible by the Poiseuille flow theory; however, this conventional laminar approach cannot illustrate the effects of various channel sizes and shapes. This paper, therefore, presents a simplified MHD flow model based upon steady state, incompressible and fully developed laminar flow theory to investigate the characteristics of a MHD pump. Inside the pump, flowing along the channel is the electrically conducting fluid flowing driven by the Lorentz forces in the direction perpendicular to both dc magnetic field and applied electric currents. The Lorentz forces were converted into a hydrostatic pressure gradient in the momentum equations of the MHD channel flow model. The numerical simulations conducted with the explicit finite difference method show that the channel dimensions and the induced Lorentz forces have significant influences on the flow velocity profile. Furthermore, the simulation results agree well with the experimental results published by other researchers.  相似文献   

8.
An attempt has been made to assess blood flow in the oval region of P. virens using radiolabelled microspheres. The results suggest a low flow rate and they are similar to those calculated using the Poiseuille equation in a previous paper. A substantial increase in flow rate was obtained on inflation of the bladder, showing that the deflating reflex was elicited.  相似文献   

9.
According to the similitude theory of fluid mechanics, a pressure-driven experiment in a sieve tube model has been performed. The relationships between the pressure gradient and the transport velocities at the various diameters of sieve pore have been obtained. The experimental data were compared with the theoretical prediction based on the poiseuille equation. The result shows that the pressure gradient required for translating the assimilate is directly proportional to the translating velocity, which agrees with Poiseuille equation. However, the resistance of the sieve plate to flow is much more than that estimated by the previous theory. Even though the translating velocity is a normal level and the diameter of the sieve tube is a typical size, the pressure gradient required for flow is about 1 bar/m. It will increase sharply with the decrease of the diameter of sieve pore. The ratios of the pressure gradients measured in the test to that predicted by Poiseuille equation are about 2–4 for the five kinds of diameters of Sieve pore. Additionally, a simulating test of the pores being partly plugged has been performed. The result shows that the pressure gradients measured are greatly beyond the range that may be kept in plants. This study will be helpful to assess Munch hypothesis.  相似文献   

10.
Cell disaggregation behavior in shear flow.   总被引:3,自引:0,他引:3       下载免费PDF全文
P Snabre  M Bitbol    P Mills 《Biophysical journal》1987,51(5):795-807
  相似文献   

11.
Models of the adhesion of a population of cells in a plane flow are developed, considering the dilute regime. Cells considered as rigid punctual entities are virtually injected at regular times within a plane channel limited by two fixed planes. The pressure profile is supposed to be triangular (constant gradient), in accordance with the assumptions of a Poiseuille flow. The cell adherence to the channel wall is governed by the balance of forces, accounting for gravity, non-specific physical interactions, such as electrostatic effects (repulsive) and Van der Waals forces (attractive), specific adhesive forces representing the ligand–receptor interactions, and friction between cells and the fluid in the vicinity of the endothelium wall. The spatial distribution of the adhesion molecules along the wall is supposed to be a random event, accounted for by a stochastic spatial variability of the dipolar moments of those molecules, according to a Gaussian process. Experimental trends reported for the rate of aggregation of L-selectin mediated leukocytes under shear flow are in qualitative accordance with the evolution versus time of adhering cells obtained by the present simulations. The effect of the maximal injection pressure on those kinetics is assessed.  相似文献   

12.
Interstitial flow in articular cartilage is secondary to compressive and shear deformations during joint motion and has been linked with the well-characterized heterogeneity in structure and composition of its extracellular matrix. In this study, we investigated the effects of introducing gradients of interstitial flow on the evolution of compositional heterogeneity in engineered cartilage. Using a parallel-plate bioreactor, we observed that Poiseuille flow stimulation of chondrocyte-seeded agarose hydrogels led to an increase in glycosaminoglycan and type II collagen deposition in the surface region of the hydrogel exposed to flow. Experimental measurements of the interstitial flow fields based on the fluorescence recovery after photobleaching technique suggested that the observed heterogeneity in composition is associated with gradients in interstitial flow in a boundary layer at the hydrogel surface. Interestingly, the interstitial flow velocity profiles were nonlinearly influenced by flow rate, which upon closer examination led us to the original observation that the apparent hydrogel permeability decreased exponentially with increased interfacial shear stress. We also observed that interstitial flow enhances convective mass transport irrespective of molecular size within the boundary layer near the hydrogel surface and that the convective contribution to transport diminishes with depth in association with interstitial flow gradients. The implications of the nonlinearly inverse relationship between the interfacial shear stress and the interstitial flux and permeability and its consequences for convective transport are important for tissue engineering, since porous scaffolds comprise networks of Poiseuille channels (pores) through which interstitial flow must navigate under mechanical stimulation or direct perfusion.  相似文献   

13.
A general method of calculating forces, torques, and translational and rotational velocities of rigid, neutrally buoyant spheres suspended in viscous liquids undergoing a uniform shear flow has been given by Arp and Mason (1977). The method is based on the matrix formulation of hydrodynamic resistances in creeping flow by Brenner and O'Neill (1972). We describe the solution of the Brenner-O'Neill force-torque vector equation in terms of the particle and external flow field coordinates and derive expressions for the normal force acting along, and the shear force acting perpendicular to, the axis of the doublet of spheres, the latter explicitly given for the first time. The equations consist of a term comprising force and torque coefficients obtained from the matrices of the hydrodynamic resistances (functions of the distance h between sphere surfaces which have been computed), and terms comprising the orientation of the doublet axis relative to the coordinates of the external flow field and the shear stress (which can be experimentally determined). We have applied the theory to a system of doublets of sphered, hardened human red cells of group A or B antigenic type cross-linked by the corresponding antibody at a fixed interparticle distance. Working from studies of the breakup of doublets of red cells in an accelerating Poiseuille flow, given in the succeeding paper, we are able to compute the hydrodynamic force required to separate the two spheres. Previous work has shown that the theory can be applied to doublets in a variable shear, Poiseuille flow, provided the ratio of particle to tube diameter is small. In calculating the force-torque coefficients it was assumed that the cells are crosslinked by antibody with h = 20 nm.  相似文献   

14.
Y Oosawa 《Biophysical journal》1989,56(6):1217-1223
The cation-selective channel from Tetrahymena cilia is permeable to both monovalent and divalent cations. The single channel conductance in mixed solutions of K+ and Ca2+ was determined by the Gibbs-Donnan ratio of K+ and Ca2+, and the binding sites of this channel were considered to be always occupied by two potassium ions or by one calcium ion under the experimental conditions: 5-90 mM K+ and 0.5-35 mM Ca2+ (Oosawa and Kasai, 1988). A two-barrier model for the channel was introduced and the values of Michaelis-Menten constants and maximum currents carried by K+ and Ca2+ were calculated using this model. Single channel current amplitudes and reversal potentials were calculated from these values. The calculated single-channel currents were compared with those obtained experimentally. The calculated reversal potentials were compared with the resting potentials of Tetrahymena measured in various concentrations of extracellular K+ and Ca2+. The method of calculation of ionic currents and reversal potentials presented here is helpful for understanding the properties of the channels permeable to both monovalent and divalent cations.  相似文献   

15.
We discuss the errors in common approximations of the volume flow rate for laminar flow through conduits with noncircular transverse sections. Before calculating flow rates, ideal geometric shapes are chosen to represent the noncircular transverse sections. The Hagen–Poiseuille equation used with hydraulic diameter underestimates the volume flow rate for laminar flow through conduits even with such ideal shapes. Correction factors that have been proposed for the Hagen–Poiseuille equation also lead to underestimates of the volume flow rate for those shapes. The exact solutions are sometimes difficult to attain, but rates calculated using the exact solutions for the ideal shapes may be as much as five times higher than the approximated rates for common transversely elongated shapes. Either the exact solutions or the approximations may be used to calculate volume flow rates through the xylem of plants. Both of these methods actually approximate flow through the original conduits because the shapes used are approximations of the conduits’ transverse sections. We recommend using the exact solutions whenever possible; they should be closer to the real solution than other approximations. We give tables of correction factors for use in the cases where calculating volume flow rate from the approximate solution, the Hagen–Poiseuille equation, is more feasible. Obtaining theoretical volume flow rates that are larger than previously thought highlights the need to clarify the causes of differences between the theoretical rates and the smaller measured volume flow rates in plant xylem.  相似文献   

16.
Summary Plasma membrane vesicles prepared from the bag re gion of the somatic muscle cell of the parasiteAscaris suum contain a large conductance, voltage-sensitive, calcium-activated chloride channel. The ability of this channel to conduct a variety of anions has been investigated using the patch-clamp technique on isolated inside-out patches of muscle membrane. Symmetrical Cl solutions (140 mm) produced single-channel I/V plots with reversal potentials of 0 mV, substitution of bath Cl by 140 mM NO3, Br and I caused depolarizing shifts in the reversal potentials. Replacement of the internal Cl by F (140 mM) caused a large hyperpolarizing shift in the reversal potential. The channel dis played a permeability sequence of I > Br = NO3> Cl > F which differed from the corresponding conductance sequence Cl > NO3 = Br = I > F. The ionic environment within the channel pore has been investigated using Reuter and Stevens (1980) plots to describe the selectivity and “fluidity” of the channel pore. In addition, the approach of Wright and Diamond (1977) was employed to estimate the number of cationic binding sites within the channel pore. The channel is relatively fluid but the number of cationic binding sites varies inversely with the ionic radius of the anion from 2.15 for F to 0.89 for the large planar anion NO3  相似文献   

17.
Y Takano 《Biorheology》1989,26(4):703-710
To discuss the decrease in the flow rate of blood experienced by astronauts, a theory of blood flow is presented taking account of the effect of gravity. The theory of two-dimensional Poiseuille flow is adopted. It is assumed that the flow is horizontal and that the width of the upper marginal layer filled with plasma thickens as gravity increases. The parameter xi which mainly indicates the effect of thickening of the upper marginal layer is introduced. The extent of decrease in the flow rate of blood in the environment of weightlessness compared to that in the gravitational field is calculated for various values of xi. The decrease is more remarkable in the flow rate of the cell fraction than that of whole blood for the same value of xi.  相似文献   

18.
Equations are derived describing the dispersion of a permeable solute during Poiseuille flow in a capillary model. It is shown that for the normal range of physiological parameters such as capillary radius, capillary length, blood flow, permeability coefficients, and diffusion constants, the center of mass of a bolus of solute moves at a speed very close to the mean speed of flow and that the solute leaves the capillary with an exponential time course depending on the permeability but not on the diffusion constant. There is no appreciable difference in the dispersion of the solute or in its rate of permeation from the capillary whether one considers piston flow or Poiseuille flow. A bolus of arbitrary radial shape tends to become radially uniform very close to the arterial end of the capillary.  相似文献   

19.
20.

This paper aims to investigate detailed mechanical interactions between the pulmonary haemodynamics and left heart function in pathophysiological situations (e.g. atrial fibrillation and acute mitral regurgitation). This is achieved by developing a complex computational framework for a coupled pulmonary circulation, left atrium and mitral valve model. The left atrium and mitral valve are modelled with physiologically realistic three-dimensional geometries, fibre-reinforced hyperelastic materials and fluid–structure interaction, and the pulmonary vessels are modelled as one-dimensional network ended with structured trees, with specified vessel geometries and wall material properties. This new coupled model reveals some interesting results which could be of diagnostic values. For example, the wave propagation through the pulmonary vasculature can lead to different arrival times for the second systolic flow wave (S2 wave) among the pulmonary veins, forming vortex rings inside the left atrium. In the case of acute mitral regurgitation, the left atrium experiences an increased energy dissipation and pressure elevation. The pulmonary veins can experience increased wave intensities, reversal flow during systole and increased early-diastolic flow wave (D wave), which in turn causes an additional flow wave across the mitral valve (L wave), as well as a reversal flow at the left atrial appendage orifice. In the case of atrial fibrillation, we show that the loss of active contraction is associated with a slower flow inside the left atrial appendage and disappearances of the late-diastole atrial reversal wave (AR wave) and the first systolic wave (S1 wave) in pulmonary veins. The haemodynamic changes along the pulmonary vessel trees on different scales from microscopic vessels to the main pulmonary artery can all be captured in this model. The work promises a potential in quantifying disease progression and medical treatments of various pulmonary diseases such as the pulmonary hypertension due to a left heart dysfunction.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号