首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfide oxidation in the phototrophic purple sulfur bacterium Chromatium vinosum D (DSMZ 180T) was studied by insertional inactivation of the fccAB genes, which encode flavocytochrome c, a protein that exhibits sulfide dehydrogenase activity in vitro. Flavocytochrome c is located in the periplasmic space as shown by a PhoA fusion to the signal peptide of the hemoprotein subunit. The genotype of the flavocytochrome-c-deficient Chr. vinosum strain FD1 was verified by Southern hybridization and PCR, and the absence of flavocytochrome c in the mutant was proven at the protein level. The oxidation of thiosulfate and intracellular sulfur by the flavocytochrome-c-deficient mutant was comparable to that of the wild-type. Disruption of the fccAB genes did not have any significant effect on the sulfide-oxidizing ability of the cells, showing that flavocytochrome c is not essential for oxidation of sulfide to intracellular sulfur and indicating the presence of a distinct sulfide-oxidizing system. In accordance with these results, Chr. vinosum extracts catalyzed electron transfer from sulfide to externally added duroquinone, indicating the presence of the enzyme sulfide:quinone oxidoreductase (EC 1.8.5.-). Further investigations showed that the sulfide:quinone oxidoreductase activity was sensitive to heat and to quinone analogue inhibitors. The enzyme is strictly membrane-bound and is constitutively expressed. The presence of sulfide:quinone oxidoreductase points to a connection of sulfide oxidation to the membrane electron transport system at the level of the quinone pool in Chr. vinosum. Received: 5 November 1997 / Accepted: 30 March 1998  相似文献   

2.
1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight yields were obtained as calculated for the complete utilization of the ethanol by the mixed cultures. 3. Dry weight yield determinations for two pure cultures ofChlorobium limicola with different growth limiting amounts of sulfide in the absence and presence of excess acetate confirmed that acetate is incorporated byChlorobium in a fixed proportion to sulfide; compared to the yield in the absence of acetate the yield is increased two to threefold in the presence of acetate. 4. The lowest possible sulfide concentrations necessary for optimal growth of mixed cultures of eitherProsthecochloris orChlorobium withDesulfuromonas on acetate were 7–8 mg H2S per liter of medium. 5. Doubling times at the growth rate limiting light intensities of 5, 10, 20, 50, 100 and 200 lux were determined under optimal growth conditions for the following phototrophic bacteria:Prosthecochloris aestuarii, Chlorobium phaeovibriodes, Chromatium vinosum andRhodopseudomonas capsulata. Reasonably good growth was still obtained withProsthecochloris at 10 and 5 lux light intensity at which no growth of the purple bacteria could be observed.  相似文献   

3.
The photosynthetic purple sulfur bacterium Chromatium vinosum has been shown to possess two previously undetected heme c-containing, soluble proteins. One is an acidic, c-type cytochrome with a molecular weight of 12 300 and an oxidation-reduction midpoint potential (at pH 8.0) of ?82 mV. The other protein is a basic protein with a molecular weight of 11 900 and an oxidation-reduction midpoint potential (at pH 8.0) of ?110 mV. The basic protein, in both oxidized and reduced forms, has optical spectra similar to those of myoglobin and the oxidized C. vinosum protein exhibits a high-spin heme EPR spectrum similar to that of metmyoglobin. Furthermore, the basic C. vinosum protein binds CO and O2. The spectra of the CO and O2 complexes show significant similarities with the respective myoglobin complexes. Possible functions for an O2-binding protein in C. vinosum are discussed.  相似文献   

4.
Competition experiments between Chromatium vinosum and Chlorobium limicola in sulfide-limited continuous culture under photolithoautotrophic conditions resulted in the coexistence of both organisms. The ratio between the two bacteria was dilution-rate as well as pH dependent. The observed coexistence can be explained as a hitherto not reported form of dual substrate limitation. The two substrates involved are the electron donors sulfide (growth-limiting substrate in the reservoir vessel) and extracellular elemental sulfur (formed by Chlorobium as a result of sulfide oxidation). It is argued that, although Chlorobium may have the better affinity for both substrates involved, Chromatium can compete successfully on the basis of its intracellular storage of sulfur. Ecological implication of the observed coexistence with respect to natural blooms are discussed.  相似文献   

5.
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP reducing power - BChl bacteriochlorophyll - Ncell cell material - specific growth rate - {ie52-1} maximal specific growth rate - D dilution rate - K s saturation constant - s concentration of limiting substrate - S R same ass but in reservoir bottle - Y yield factor - iSo intracellular elemental sulfur - eSo extracellular elemental sulfur - PHB poly-beta-hydroxybutyric acid  相似文献   

6.
《BBA》1985,807(2):134-142
Chromatophores of the purple sulfur bacterium Chromatium vinosum were shown to contain a cytochrome similar to cytochrome c1 and two b cytochromes. Cytochrome b can be accumulated in the reduced form upon illumination at an ambient redox potential of +415 mV in the presence of the electron transport inhibitors antimycin A or HOQNO. The reductions of cytochrome b, of the high-potential cytochrome c555 and of the primary electron donor P-870 are all inhibited by myxothiazol. Dark-adapted C. vinosum chromatophores show little cytochrome b reduction on the first flash. Considerable cytochrome b reduction (1 cytochrome b:8 P-870 present) is observed on the second flash. This observation and the 1:1 stoichiometry observed between cytochrome b reduction and P-870+ reduction after the second flash support a Q-cycle model for cyclic electron flow in C. vinosum.  相似文献   

7.
The photosynthetic purple sulfur bacterium Chromatium vinosum possesses an active transport system for glucose that also transports the nonmetabolizable glucose analog, αmethylglucoside. Transport is not accompanied by phosphorylation nor does it appear to require ATP. Rather α-methylglucoside uptake appears to be driven directly by the electrochemical proton gradient produced by light-driven cyclic electron flow.  相似文献   

8.
Sulfide utilization by purple nonsulfur bacteria   总被引:1,自引:0,他引:1  
Summary The purple nonsulfur bacteria Rhodospirillum rubrum SMG 107, Rhodopseudomonas capsulata SMG 155, Rps. sphaeroides SMG 158 and Rps. palustris SMG 124 were tested for a possible utilization of sulfide. The first three strains were found to oxidize sulfide to extracellular elemental sulfur only, whereas Rps. palustris SMG 124 converted sulfide into sulfate without intermediate accumulation of elemental sulfur. Growth ceased at lower sulfide concentrations than usually found with purple sulfur bacteria. In consequence of the low sulfide tolerance information on the specific growth rates obtainable with sulfide as photosynthetic electron donor could not be provided by cultivation in batch cultures. Sulfide-limited chemostat cultures of Rps. capsulata SMG 155 showed that the maximum specific growth rate was close to 0.14 h-1 (doubling time 5 h). Sulfide was converted into extracellular elemental sulfur at all dilution rates tested. The maximum specific growth rate of Rps. palustris SMG 124 was found to be much lower (less than 0.03 h-1). Sulfate was the only product of the conversion of sulfide.These data show that at least some purple nonsulfur bacteria may play a role in the dissimilatory sulfur cycle in nature. Taxonomic implications of our results are discussed.Abbreviation SMG Sammlung für Mikroorganismen, Göttingen  相似文献   

9.
Uptake of alanine and its nonmetabolizable analog α-aminoisobutyric acid (AIB) by the photosynthetic purple sulfur bacterium Chromatium vinosum is stimulated fivefold by Na+. Neither Li+ nor K+ have any stimulatory effect. AIB uptake can be supported by a Na+ gradient in the absence of other energy sources. AIB uptake is also accompanied by Na+ uptake. These results suggest that AIB is taken up by C. vinosum via a sodium symport. Cells of C. vinosum and the purple nonsulfur bacterium Rhodospirillum rubrum show energy-dependent Na+ efflux and Na+ uptake can be demonstrated with chromatophores prepared from these bacteria.  相似文献   

10.
Summary An enrichment culture ofChromatium Okenii, obtained from mud of a ditch at Delft, was used for isolation of this species. The bacteria of the strain, isolated by making 5 successive shake cultures in an agar medium were, however, less than half the size ofChr. Okenii when cultivated under the same conditions as the bacteria in the original culture.By variation of the culture conditions for the pure strain, it appeared that in a mineral medium containing fairly high concentrations of sodium thiosulphate and fairly low concentrations of sodium malate, bacteria developed of nearly the same size as present in the enrichment culture. This supports the view ofWinogradsky that media of this type offer the most natural conditions to purple sulphur bacteria.It is, therefore, evident thatChr. Okenii is a highly pleomorphic species, and the consequences hereof for the differentiation of species within the genusChromatium were discussed.  相似文献   

11.
Experiments with mixed cultures ofEscherichia coli, Desulfovibrio vulgaris, andChromatium vinosum were conducted using a synthetic medium with glucose as the substrate. The bacterial number and the changes in the chemical factors were determined during the development of the mixed culture. (i) Fermentation of glucose byE. coli produces organic acids (formic, acetic, lactic, and succinic) and alcohol. The growth-yield constant K (cell dry weight per weight solid substrate) does not exceed 0.05. (ii) In the mixed culture ofE. coli andD. vulgaris, the reduction of sulfate is accompanied by a total consumption of formate, lactate, and alcohol and an increase in the sulfide and acetate content. (iii) When the three physiologically different species are allowed to grow simultaneously, there is no accumulation of catabolites in the medium and the growth yield constant increases to 0.46. Maximum phototrophic production requires the presence of bothE. coli andD. vulgaris. A low substrate concentration and the simultaneous growth of the three organisms are other factors that contribute towards a high output. The biochemical parameters of the medium are influenced to a large extent by the glucose level. The results suggest that the behavior of the strains is different in pure and mixed cultures.  相似文献   

12.
The light-driven, thiosulfate-dependent reduction of nicotinamideadenine dinucleotides under acrobic conditions in whole cellsof Chromatium vinosum was investigated. The total concentration of pyridine nucleotides in whole cellswas about 50 nmoles per µmole of bacteriochlorophyll.Under dark aerobic conditions, the majority of the nucleotidespresent was NAD+ with about 20% as NADP+. About 40% of the total NAD was reduced under continuous illumination.Thiosulfate or sulfide was needed for the photoreduction, whileorganic acids such as succinate or malate were not. The initialrate of NAD+ photoreduction in the presence of thiosulfate wasapproximately 100 nmoles per µmole of bacteriochlorophyllper min. The NAD+ photoreduction was strongly inhibited by uncouplersand electron transfer inhibitors. In contrast, an energy transferinhibitor, N, N'-dicyclohexylcarbodiimide, did not affect NAD+photoreduction at a concentration at which the light-inducedATP formation was inhibited. A transmembrane electrochemicalH+ gradient generated by cyclic electron transfer may be theenergy source for reduction of NAD+ in Chromatium vinosum. (Received April 2, 1980; )  相似文献   

13.
The15N resonances in reduced and oxidizedChromatium vinosum high-potential iron protein have been assigned by use of1H-1H COSY spectra and1H-15N HMQC, HMQC-COSY, and HMQC-NOESY spectra. Unambiguous assignment of 70 of 85 backbone15N resonances in the reduced protein and 62 of 85 resonances in the oxidized protein are made, as are 12 of 21 side-chain15N resonances.  相似文献   

14.
A.B. Rubin  Don Devault 《BBA》1978,501(3):440-448
The uncoupler, m-chlorocarbonyl cyanide phenylhydrazone (CCCP) added to anaerobic, dark-adapted whole cells of Chromatium vinosum is found to speed the reduction of cytochrome after oxidation by laser or by steady illumination and, subject to unknown factors, to slow the laser-induced oxidation. There is considerable evidence, including spectra and loss of low-temperature oxidizability that this results from a switch of the identity of the cytochrome oxidized from the low-potential cytochrome c-552 to the high-potential cytochrome c555. Redox control and/or control by conformational movements of the cytochromes, either being coupled to energy transduction in the cyclic system, are suggested as mechanisms for the switching. If the switching hypothesis is not accepted, the increased rate of reduction could alternatively be explained by postulating a phosphorylation site in the reduction pathway.  相似文献   

15.
α-Aminoisobutyrate (AIB) serves as a transportable, nonmetabolizable alanine analog in the purple sulfur bacterium Chromatium vinosum. AIB transport in C. vinosum appears to be catalyzed by an electrogenic Na+-alanine (AIB) symport without any direct participation of ATP-driven or H+-symport systems. In addition to Na+ being cotransported with AIB via the symport, a transmembrane Na+ gradient appears to increase the affinity of the symport of AIB. It appears that these two effects of Na+ involve different Na+-binding sites.  相似文献   

16.
Summary In sulfide limited continuous culture of a marine isolate of Chromatium vinosum, sulfide was undetectable in steady states below dilution rates of 0.06h-1, that is 1/2 of the maximum specific growth rate. In the same range, sulfur is assumed to attain the role of the growth rate limiting substrate. Furthermore, it could be shown that the rate of sulfur oxidation is a function of the surface area of the sulfur globules rather than of the sulfur concentration. In completely filled chemostats, steady states were obtainable only at dilution rates not exceeding 0.09 h-1. In the presence of a nitrogen flushed gas phase, steady states were obtained at dilution rates approaching the maximum specific growth rate (0.12h-1). This phenomenon is ascribed to the particular sulfide tolerance of our strain of Chromatium vinosum. The saturation constant and the inhibition constant (lowest, respectively highest total sulfide concentration at which the specific growth rate is equal to one-half of the maximum specific growth rate in the absence of inhibition) were 0.007 mM and 0.85 mM, respectively.The ecological significance of the data is discussed.Contribution No. 2406 from the Woods Hole Oceanographic Institution.  相似文献   

17.
The photosynthetic response of the purple sulfur bacterium Chromatium vinosum DSM 185 to different degrees of illumination was analyzed. The microorganism was grown in continuous culture, and samples were taken from the effluent of the culture and incubated at different irradiances to determine the specific rate of sulfur oxidation as a measure of the photosynthetic activity of the organism. The activities obtained were plotted as a function of the specific rate of light uptake, and for each set of data a photosynthesis equation was fitted, which allowed the estimation of Pmax (photosynthetic capacity), qk (the threshold irradiance for light limitation), and m (maintenance coefficient). The results indicated that cells grown under light limitation are able to achieve higher photosynthetic activities than cells grown under light saturation. The photosynthetic capacity (Pmax) remained constant under all the conditions of illumination tested, while the maintenance expenses (m) were higher under light limitation. The parameter qk, on the contrary, decreased considerably at limiting irradiances. Received: 16 January 1998 / Accepted: 7 September 1998  相似文献   

18.
Midpoint redox potential (EM) versus pH curves are reported over the pH range 5 to 10 for the cytochromes c′ from three species of purple photosynthetic bacteria: Rhodospirillum rubrum, Rhodopseudomonas palustris and Chromatium vinosum. In each case, theoretical curves are fitted to the data and pK values for the reduced (pH 5–5.5) and oxidized (pH 8–8.5) forms of the protein are found to influence the midpoint redox potentials. The oxidized form pK values in each case are found to correlate with previously determined pK values for variation in physical and/or spectroscopic properties. This correlation of functional and physical observables is discussed in terms of a possible mechanism of control of midpoint redox potential through heme iron-ligand bonding as moderated by the protein conformation in response to solution conditions. The reduced form pK values are discussed in terms of a mechanism which would alter the polarity of the heme environment, thereby influencing redox potentials.  相似文献   

19.
Average specific density of individual cells of pure cultures of Chromatium warmingii and Chromatium vinosum were measured by isopicnic gradient centrifugation with Percoll during growth at constant illumination as a function of the increasing content of intracellular sulfur. Cell number and volume, bacteriochlorophyll a, sulfide, and sulfur were followed in the cultures along with cellular buoyant density. Poly--hydroxybutyrate was monitored at several points during growth of the cultures. The density of C. warmingii changed from 1.071 to 1.108 g cm-3 (sulfur content per cell varied from 0 to 1.71pg). C. vinosum changed its density from 1.096 to 1.160 g cm-3 (sulfur content per cell varied from 0 to 0.43 pg). Maximum sulfur content in pg of sulfur per m3 of cell volume were 0.178 for C. warmingii and 0.294 for C. vinosum. Measurement of the differences in buoyant density, volume and sulfur content before and after ethanol extraction of cells with and without intracellular sulfur, allowed tentatively to estimate the density of sulfur inside the cells as 1.219 g cm-3. Isolation of sulfur globules and centrifugation in density gradients gave a density higher than 1.143 g cm-3 for these intracellular inclusions.Non-common abbreviations Bchl Bacteriochlorophyll - DMB Density Marker Beads - PHB poly--hydroxybutyrate  相似文献   

20.
Batch cultures of Thiocapsa roseopersicina strain 6311, Thiocystis violacea strain 2311 and Chromatium vinosum strain 1611, grown anaerobically in the light on sulfide with urea, ammonia, N2 or casein hydrolysate as nitrogen source exhibited urease activity, while Chromatium vinosum strain D neither showed any degradation of urea nor urease activity on any of the nitrogen sources tested.In T. violacea and C. vinosum strain 1611 urease was little affected by the nitrogen source and seemed to be constitutive. In T. roseopersicina, however, the enzyme was repressed by ammonia (although a low basal level of activity remained) and, to a lesser degree, induced by urea: The presense of urea stimulated a temporary increase in urease activity in the early exponential growth phase. The highest activities, however, were found after growth on N2, and especially on 0.1% casein hydrolysate (in the absence or after exhaustion of external ammonia), but not before the stationary growth phase was reached. Derepressed urease synthesis required an efficient external source of nitrogen.In cultures of T. roseopersicina urease activity showed a periodic oscillation which depended on the repeated feeding with sulfide and subsequent variation in the sulfur content of the cells. The possible reasons of this oscillation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号