首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium deficiency is responsible for Zenker type muscle degeneration in calves, lambs, and foals in the prenatal and postnatal stages of development. Investigations have shown that the selenium GSH Px, and vitamin E content of the maternal and fetal parts of the placenta in cattle are different. Similarly, low concentrations of selenium are present in milk from cows and sheep. In addition to an inadquate supply of selenium and vitamin E as a contributory cause of fetal nutritive muscular dystrophy (FNMD), it is assumed that a placental transport block and/or impaired selenium metabolism in the placenta are also responsible. Postnatal nutritive muscular dystrophy, however, is attributed to either acute selenium and vitamin E deficiency in basic feed or impaired plant absorption of selenium as a result of antagonistic elements, such as sulphur.  相似文献   

2.
High mortality and a high incidence of exudative diathesis and muscular dystrophy were observed in chicks fed a diet supplemented with either 800 or 1600 ppm copper. Adding 0.5 ppm selenium to a basal diet containing 0.2 ppm prevented mortality and selenium deficiency signs. Dietary zinc levels of 2100 to 4100 ppm also resulted in high mortality, exudative diathesis, and muscular dystrophy. A selenium supplement of 0.5 ppm completely prevented the deficiency signs and markedly reduced mortality. The results demonstrate that both copper and zinc can induce a selenium deficiency in chicks when a diet relatively low in this element is fed.  相似文献   

3.
Cultured bovine adrenocortical cells were previously shown to be functionally deficient in selenium and vitamin E when grown in medium supplemented with fetal bovine serum. In the present experiments, the lack of significant bioavailable amounts of selenium in the medium was demonstrated by the finding of only low levels of glutathione peroxidase in the cultured cells (0.008 U/mg protein compared with 0.045 U/mg protein in fresh adrenocortical tissue). When 20 nM selenium as selenite was added to the cultured adrenocortical cells, glutathione peroxidase activity increased continuously over 72 h, with a total increase of about eightfold over this period. Over the same time-course, the highest concentration of cumene hydroperoxide tolerated by the cells without cell death increased progressively from 10 microM to 50 microM. Addition of 1 microM alpha-tocopherol also increased the amount of cumene hydroperoxide tolerated to 50 microM. Cell death was measured by cloning efficiency after removal of cumene hydroperoxide. Addition of either selenium or alpha-tocopherol had little effect on the growth rate of the cells over six passages, even when residual vitamin E was removed from the serum by extraction with ether and residual low molecular weight selenium compounds were removed by dialysis. It is concluded that combined deficiency of selenium and vitamin E, at least in the presence of other components of fetal bovine serum, has little effect on the ability of the cells to survive under normal conditions, as evidenced by continued long-term proliferation. However, the low levels of glutathione peroxidase resulting from selenium deficiency cause an increase susceptibility to peroxide-mediated toxicity. The combined deficiency of selenium and vitamin E impairs the ability of cells to survive under adverse conditions, as well as altering mitochondrial functions, as previously demonstrated.  相似文献   

4.
The present communication describes a tissue culture system which can be used to simulate conditions of vitamin E, selenium, and essential fatty acid deficiency, and in which the effect of adding these, and Other, substances can be studied. By restricting the lipid content of fetal calf serum, the effect of the addition of specific lipids on growth and on permeability to 2-deoxyglucose of the plasma membrane was determined. It was found that optimal growth and glucose transport depended on the presence together of vitamin E, linoleic acid, and cholesterol in the medium, and the significance of this finding is discussed in relation to current ideas about the biological action of vitamin E. By incorporating only 2.5% fetal calf serum in the growth medium, conditions of selenium deficiency could be demonstrated, and the addition of 0.1 nmol Se per dish stimulated growth whereas at higher levels of inclusion selenium was found to be toxic.  相似文献   

5.
Diets specifically deficient in selenium (Se) and/or vitamin E or adequate in both nutrients were fed to chicks from the time of hatching. Lymphoid organs (bursa, thymus, and in some instances, spleen) were collected from chicks 7-35 days of age. Growth of the chicks fed these diets was monitored over the experimental period as was lymphoid organ growth. The development of the primary lymphoid organs was further assessed by histological techniques and the organ contents of vitamin E (alpha-tocopherol) and Se were determined. Specific deficiencies of either Se or vitamin E were found to significantly impair bursal growth as did a combined deficiency. Thymic growth was impaired only by the combined deficiency diet. Severe histopathological changes in the bursa resulted from the combined deficiency and these were detectable by 10-14 days after hatching. These changes were characterized by a gradual degeneration of the epithelium and an accompanying depletion of lymphocytes. Similar changes, although slower to develop and less severe, were observed in the thymus as a result of the combined deficiency. When both serum and tissue levels of vitamin E and Se were monitored, it was observed that these were rapidly and independently depleted by the specific deficiency diets. These data suggest that the primary lymphoid organs are major targets of Se and vitamin E dietary deficiencies and provide a possible mechanism by which immune function may be impaired.  相似文献   

6.
Selenium is an integral component of the enzymes glutathione peroxidase (GPx) and iodothyronine deiodinases. Although selenium nutrition could conceivably affect thyroid function in infants, children and adolescents, available data suggest that the effect of selenium deficiency on thyroid function is relatively modest. In patients with isolated selenium deficiency (such as patients with phenylketonuria receiving a low-protein diet), peripheral thyroid hormone metabolism is impaired but there are no changes in thyrotropin (TSH) or clinical signs of hypothyroidism, suggesting that these patients are euthyroid. Selenium supplementation may be advisable to optimize tissue GPx activity and prevent potential oxidative stress damage. In areas where combined selenium and iodine deficiencies are present (such as endemic goiter areas in Central Africa), selenium deficiency may be responsible for the destruction of the thyroid gland in myxoedematous cretins but may also play a protective role by mitigating fetal hypothyroidism. In these areas, selenium supplementation should only be advocated at the same time or after iodine supplementation. In patients with absent or decreased production of thyroid hormones and who rely solely on deiodination of exogenous L-thyroxine for generation of the active triiodothyronine (such as patients with congenital hypothyroidism), selenium supplementation may optimize thyroid hormone feedback at the pituitary level and decrease stimulation of the residual thyroid tissue.  相似文献   

7.
40种常见花粉相对营养价值评价   总被引:9,自引:0,他引:9  
本文统计了40种常见花粉的蛋白质、钙、铁、锌、硒、视黄醇当量、维生素E和维生素C的含量并转化为其相对营养价进行分析比较。其相对营养价分别为28.22、16.43、308.61、35.05、49.11、1696.60、4103.33和60.65。表明花粉营养丰富,视黄醇当量、维生素E和铁的含量尤其突出,是理想的天然保健食品。  相似文献   

8.
In animals, decreases in selenium-containing glutathione peroxidase activity and the resultant impairment of peroxide metabolism can account for many, but not all of the biochemical and clinical changes caused by selenium deficiency. Recently, however, type I iodothyronine 5'-deiodinase has also been shown to be a selenium-containing enzyme. This explains the impairment of thyroid hormone metabolism caused by selenium deficiency in animals with a normal vitamin E status. Since iodothyronine 5'-deiodinases are essential for the production of the active thyroid hormone 3,5,3'-triiodothyronine, some of the consequences of selenium deficiency may result from thyroid changes rather than inability to metabolise peroxides. In particular, the impaired thyroid hormone metabolism may be responsible for decreased growth and resistance to cold stress in selenium-deficient animals. A further consequence of the role of selenium in thyroid hormone metabolism is the exacerbation of some of the thyroid changes in iodine deficiency by a concurrent selenium deficiency. Selenium status may therefore have a major influence on the outcome of iodine deficiency in both human and animal populations.  相似文献   

9.
M E Murphy  J P Kehrer 《Life sciences》1986,39(24):2271-2278
Despite years of intensive work, the biochemical defect responsible for the pathogenesis of inherited muscular dystrophy has not been identified either in humans or animal models. This review examines evidence in support of the hypothesis that free radicals may be responsible for muscle degeneration in this disorder. A variety of cellular abnormalities noted in dystrophic muscles can be accounted for by free radical mediated damage. In addition, chemical by-products associated with free radical damage are found in dystrophic muscle tissue from humans and animals with this disease. Various enzymatic antioxidant systems can be enhanced as a normal cellular response to oxidative stress, and such changes are seen both in dystrophic muscle cells and certain other tissues of dystrophic animals. An increased level of free radical damage would follow from either: enhanced production of free radical species, or a deficient component of the cellular antioxidant system, such as vitamin E. The free radical hypothesis of muscular dystrophy can account for data supporting several alternative theories of the pathogenesis of this disease, as well as other observations which have not previously been explained.  相似文献   

10.
Oxidative muscular injury and its relevance to hyperthyroidism   总被引:2,自引:0,他引:2  
In experimental hyperthyroidism, acceleration of lipid peroxidation occurs in heart and slow-oxidative muscles, suggesting the contribution of reactive oxygen species to the muscular injury caused by thyroid hormones. This article reviews various models of oxidative muscular injury and considers the relevance of the accompanying metabolic derangements to thyrotoxic myopathy and cardiomyopathy, which are the major complications of hyperthyroidism. The muscular injury models in which reactive oxygen species are supposed to play a role are ischemia/reperfusion syndrome, exercise-induced myopathy, heart and skeletal muscle diseases related to the nutritional deficiency of selenium and vitamin E and related disorders, and genetic muscular dystrophies. These models provide evidence that mitochondrial function and the glutathione-dependent antioxidant system are important for the maintenance of the structural and functional integrity of muscular tissues. Thyroid hormones have a profound effect on mitochondrial oxidative activity, synthesis and degradation of proteins and vitamin E, the sensitivity of the tissues to catecholamine, the differentiation of muscle fibers, and the levels of antioxidant enzymes. The large volume of circumstantial evidence presented here indicates that hyperthyroid muscular tissues undergo several biochemical changes that predispose them to free radical-mediated injury.  相似文献   

11.
One-day-old chicks were reared using diets differing in their vitamin E and/or selenium content. The purpose of this research was to detect any possible imbalance in the antioxidant defense system, which could be related to development of nutritional pancreatic atrophy. Mitochondrial membranes from animals deficient in both nutrients, or just vitamin E, submitted to peroxidizability ‘in vitro’ had the production of TBARS greatly enhanced. Measurements of the 2-GSH/GSSG ratio suggested that selenium and vitamin E, the latter in higher magnitude, were responsible for maintenance of the reducing capacity of the cell. Enzymatic defense systems against oxidative stress were also studied. The results indicated that the total antioxidant enzymatic activity of pancreatic cells was not sufficient to scavenge all the ROS generated in the nutritionally deficient animals. The present study suggests that nutritional deficiency of selenium and/or vitamin E generates one imbalance between pro-oxidant and antioxidant systems in chicken pancreas, leading to oxidative stress and pancreatic atrophy.  相似文献   

12.
The effects of dietary sodium selenite and vitamin E on the microvascular permeability of rat organs such as heart, brain, kidney, liver and eye were investigated by using the Evans blue leakage method. Combined deficiency of selenium and vitamin E caused an increase in the permeability of the heart and eye with respect to their controls while it had no considerable effect on the permeability of other organs. On the other hand, toxic levels of selenium (4.2 mg/kg) in diet decreased the permeabilities in kidney, liver, and eye whereas this parameter of brain increased in the same animal group. These results suggested that low or high sodium selenite and vitamin E contents in diet could alter the microvascular permeability of different organs in different manners. It might be important to give reasonable explanations for the pathophysiology of some diseases that are characterized with organ damage and /or disfunction originated from selenium deficiency or toxicity.  相似文献   

13.
The metabolic relationships among the antioxidant nutrients selenium, sulfur, and vitamin E are particularly close. Selenium and vitamin E have long been known to spare one another in certain nutritional diseases of animals, and selenium has been considered to have a key antioxidant defense function as a component of glutathione peroxidase. However, the antioxidant role of glutathione peroxidase has been questioned and new proteins containing selenium have been identified: phospholipid hydroperoxide glutathione peroxidase, selenoprotein P, and iodothyronine deiodinase. Glutathione peroxidase activity independent of selenium resides in the glutathione S-transferases. Glutathione participates in both enzymatic and nonenzymatic antioxidant defense systems. Some low-molecular weight selenium compounds (e.g., ebselen) exhibit glutathione peroxidase-like action. Certain low molecular weight thiols decompose peroxides nonenzymatically (e.g., the ovothiols). Murine malaria appears to be a useful experimental model for investigating interrelationships of selenium and vitamin E. Vitamin E deficiency protects against the parasite, especially when the mice are concurrently fed peroxidizable fat such as fish or linseed oils. Selenium deficiency, on the other hand, has little or no protective effect against the parasite. Any practical utility of pro-oxidant diets in combating human malaria remains to be determined.  相似文献   

14.
Relationship between selenium, immunity and resistance against infection   总被引:2,自引:0,他引:2  
1. Food selenium content, selenium supply and selenium needs are presented, along with methods of evaluation of selenium status. Glutathione peroxidase, a selenium-containing enzyme, is ubiquitous in the organism. 2. Some experimental studies on animal models reported a positive relationship between selenium status and resistance against infections. 3. Only one study in humans concerned the mechanisms of immune functions in selenium deficiency. Several experimental works suggest that severe selenium deficiency compromises T-cell dependent immune functions such as the blastogenic response to mitogens, but selenium deficiency was concomitant with vitamin E deficiency in most of them. Delayed hypersensitivity response is controversial in selenium-supplemented rats and guinea-pigs. 4. Selenium deficiency in animals decreases the antibody response, especially if associated with vitamin E deficiency. Low dietary selenium supplementation of healthy animals has a positive effect upon humoral responses. 5. Despite some controversies, most experimental studies on selenium-deficient animals report normal phagocytosis and an altered bactericidal capacity of neutrophils. The decrease in glutathione peroxidase activity of polymorphonuclear cells following selenium deficiency could explain some of these alterations. 6. Splenic Natural Killer cells activity is enhanced in selenium-supplemented, healthy animals.  相似文献   

15.
The role of vitamin E and selenium as protective agents against oxidative stress was evaluated by measuring liver chemiluminescence in situ. Weanling rats fed a vitamin E- and selenium-deficient diet showed liver chemiluminescence that was increased 60 and 100% over control values at 16 and 18 days respectively after weaning. At day 21, the double deficiency led to hepatic necrosis, as observed by optical and electron microscopy, and increased serum levels of lactate dehydrogenase and alanine aminotransferase. Single deficiencies, in either vitamin E or selenium, did not produce liver necrosis but increased liver chemiluminescence. Vitamin E deficiency led to a 23 and 50% increase in liver emission at days 18 and 20 respectively; selenium deficiency produced a 64% increase at day 16. The activity of liver selenium-glutathione peroxidase diminished to 13% of the control value in the rats fed doubly deficient and selenium-deficient diets. Activities of superoxide dismutase, catalase and non-selenium-glutathione peroxidase were not modified by the different diets. These results suggest that oxy-radical generation may play a major role in hepatic necrosis in vitamin E- and selenium-deficiency.  相似文献   

16.
Although genetic mutations that are responsible for most of the inherited neuromuscular diseases have been identified, the molecular and cellular mechanisms that cause muscle and nerve depletion are not well understood and therapies are lacking. Histological studies of many neuromuscular diseases indicated that loss of motor-nerve and/or skeletal-muscle function might be due to excessive cell death by apoptosis. Recent studies have confirmed this possibility by showing that pathology in mouse models of amyotrophic lateral sclerosis, congenital muscular dystrophy, oculopharyngeal muscular dystrophy and collagen-VI deficiency, but not Duchenne muscular dystrophy, is significantly ameliorated by genetic or pharmacological interventions that have been designed to inhibit apoptosis. Thus, apoptosis greatly contributes to pathology in mouse models of several neuromuscular diseases, and appropriate anti-apoptosis therapy might therefore be beneficial for the corresponding human diseases.  相似文献   

17.
The effects of deficiencies in the antioxidant nutrients, vitamin E and selenium, on the host response to gastrointestinal nematode infection are unknown. The aim of the study was to determine the effect of antioxidant deficiencies on nematode-induced alterations in intestinal function in mice. BALB/c mice were fed control diets or diets deficient in selenium or vitamin E and the response to a secondary challenge inoculation with Heligmosomoides polygyrus was determined. Egg and worm counts were assessed to determine host resistance. Sections of jejunum were mounted in Ussing chambers to measure changes in permeability, absorption, and secretion, or suspended in organ baths to determine smooth muscle contraction. Both selenium and vitamin E deficient diets reduced resistance to helminth infection. Vitamin E, but not selenium, deficiency prevented nematode-induced decreases in glucose absorption and hyper-contractility of smooth muscle. Thus, vitamin E status is an important factor in the physiological response to intestinal nematode infection and may contribute to antioxidant-dependent protective mechanisms in the small intestine.  相似文献   

18.
Selenium is an essential trace element and it is well known that selenium is necessary for cell culture. However, the mechanism underlying the role of selenium in cellular proliferation and survival is still unknown. The present study using Jurkat cells showed that selenium deficiency in a serum-free medium decreased the selenium-dependent enzyme activity (glutathione peroxidases and thioredoxin reductase) within cells and cell viability. To understand the mechanism of this effect of selenium, we examined the effect of other antioxidants, which act by different mechanisms. Vitamin E, a lipid-soluble radical-scavenging antioxidant, completely blocked selenium deficiency-induced cell death, although alpha-tocopherol (biologically the most active form of vitamin E) could not preserve selenium-dependent enzyme activity. Other antioxidants, such as different isoforms and derivatives of vitamin E, BO-653 and deferoxamine mesylate, also exerted an inhibitory effect. However, the water-soluble antioxidants, such as ascorbic acid, N-acetyl cysteine, and glutathione, displayed no such effect. Dichlorodihydrofluorescein (DCF) assay revealed that cellular reactive oxygen species (ROS) increased before cell death, and sodium selenite and alpha-tocopherol inhibited ROS increase in a dose-dependent manner. The generation of lipid hydroperoxides was observed by fluorescence probe diphenyl-1-pyrenylphosphine (DPPP) and HPLC chemiluminescence only in selenium-deficient cells. These results suggest that the ROS, especially lipid hydroperoxides, are involved in the cell death caused by selenium deficiency and that selenium and vitamin E cooperate in the defense against oxidative stress upon cells by detoxifying and inhibiting the formation of lipid hydroperoxides.  相似文献   

19.
Myocardial necrosis and mineralization has been identified in a colony of guinea pigs which were subsequently tested for vitamin E and selenium deficiency. Serum vitamin E and whole blood selenium levels were within normal ranges. The erythrocyte glutathione peroxidase test has potential as a predictor of whole blood selenium levels in the guinea pig. The red blood cell hemolysis test used in this study did not correlate consistently with the serum vitamin E levels. We suspect that myocardial necrosis and mineralization may have resulted from inbreeding guinea pigs within the closed colony.  相似文献   

20.
In this report we describe the use of dystrophin analysis both in the diagnosis of Duchenne muscular dystrophy (DMD) in an aborted fetus and in genetic counseling. Our consultand's initial carrier risk, as based on family history and creatine kinase determinations, was calculated as 0.6%. DNA analysis of her family (and fetus) modified this risk to 8.5%. Skeletal muscle of the 23-wk male abortus was found to be histologically indistinguishable from that of age-matched controls. However, immunoblot testing for dystrophin indicated that the fetus had indeed inherited dystrophin deficiency. The carrier risk of the consultand was thus elevated to 100%. Dystrophin assays should be employed whenever the diagnosis of fetal DMD is equivocal (e.g., cases in which a gene deletion cannot be identified). Assay results are crucial for genetic counseling for subsequent pregnancies and for studies of the early pathogenesis of muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号