首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37°C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

2.
The distribution of culturable bacteria in the rhizosphere, rhizoplane, and interior root tissues of moso bamboo plants was investigated in this study. Of the 182 isolates showing different colony characteristics on Luria–Bertani and King B plates, 56 operational taxonomic units of 22 genera were identified by 16S ribosomal RNA gene sequence analysis. The majority of root endophytic bacteria were Proteobacteria (67.5%), while the majority of rhizospheric and rhizoplane bacteria were Firmicutes (66.3% and 70.4%, respectively). The most common genus in both the rhizosphere and on the rhizoplane was Bacillus (42.4% and 44.4%, respectively), while Burkholderia was the most common genus inside the roots, comprising 35.0% of the isolates from this root domain. The endophytic bacterial community was less diverse than the rhizoplane and rhizospheric bacterial communities. Members of Lysinibacillus, Bacillus, and Burkholderia were found in all three root domains, whereas many isolates were found in only a single domain. Our results show that the population diversity of culturable bacteria is abundant in the root domains of moso bamboo plants and that obvious differences exist among the rhizospheric, rhizoplane, and endophytic bacterial communities.  相似文献   

3.
Bacteria were isolated from the rhizosphere and from inside the roots and stems of sugarcane plants grown in the field in Brazil. Endophytic bacteria were found in both the roots and the stems of sugarcane plants, with a significantly higher density in the roots. Many of the cultivated endophytic bacteria were shown to produce the plant growth hormone indoleacetic acid, and this trait was more frequently found among bacteria from the stem. 16S rRNA gene sequence analysis revealed that the selected isolates of the endophytic bacterial community of sugarcane belong to the genera of Burkholderia, Pantoea, Pseudomonas, and Microbacterium. Bacterial isolates belonging to the genus Burkholderia were the most predominant among the endophytic bacteria. Many of the Burkholderia isolates produced the antifungal metabolite pyrrolnitrin, and all were able to grow at 37 degrees C. Phylogenetic analyses of the 16S rRNA gene and recA gene sequences indicated that the endophytic Burkholderia isolates from sugarcane are closely related to clinical isolates of the Burkholderia cepacia complex and clustered with B. cenocepacia (gv. III) isolates from cystic fibrosis patients. These results suggest that isolates of the B. cepacia complex are an integral part of the endophytic bacterial community of sugarcane in Brazil and reinforce the hypothesis that plant-associated environments may act as a niche for putative opportunistic human pathogenic bacteria.  相似文献   

4.
Twenty-two endophytic bacterial isolates from the roots of sugarcane were compared morphologically, biochemically and genetically. Gram staining, colony pigment, texture and other cultural characteristics were taken for morphological characterization. Oxidation-fermentation tests for D-glucose and D-sucrose, production of acid and hydrogen from different carbon source, oxidase activity, antibiotic and drug resistance patterns were chosen as the biochemical and physiological criteria. Twelve random decamer primers were used to analyze and compare these isolates through RAPD among themselves as well as with known standard diazotrophic strains. The isolates were compared through dendrograms constructed on the basis of similarity patterns obtained from biochemical and RAPD analysis. The estimated diversity through RAPD analysis was more evident than the diversity on the basis of morphological and biochemical characters. Within Acetobacter group, the isolates showed substantial genetic diversity for future exploitation as PGPRs and diazotrophic associative endophytes.  相似文献   

5.
This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture.  相似文献   

6.
Isolates from the Fusarium fujikuroi species complex, mainly F. sacchari, have been reported to be the causal agents of pokkah boeng in sugarcane in Brazil. However, inadequate information was available on the occurrence and genetic diversity of F. sacchari in Northeast Brazil, which is a limiting factor on management. Thus, isolates of F. subglutinans sensu lato from sugarcane plants with symptoms of pokkah boeng were evaluated using the sexual cross-fertility to determine species. All the isolates produced black perithecia when they were crossed with the test isolates of F. sacchari. Three weeks after the crossing, the formation of fertile ascospores cirri was observed. Thirty-four isolates were self-sterile hermaphrodites, while 21 were fertile only as males. Five isolates were homothallic. The effective size [Ne(f)] of the population as a function of the frequency of hermaphrodites and female sterile strains was 95.5%. The F. sacchari isolates were separated into four genetic groups independent of geographic location. The mean of polymorphism among all populations was 79%, and the average unbiased genetic diversity (uh) was considered moderate (0.31). This study in addition to confirming that F. sacchari as the main species associated with pokkah boeng in sugarcane in Northeast Brazil, reveals the relationship of mating type and genetic diversity of F. sacchari. The unrestricted gene flow between regions is probably the best explanation for the low geographic correlation. This knowledge will help in the adoption of management measures with fungicides or resistant cultivars.  相似文献   

7.
Bacteria with the ability to grow on nitrogen-free media and with nitrogenase activity under aerobic or microaerobic conditions were isolated from sugarcane roots collected from four different agricultural locations in Granada (Spain). Isolates were Gram negative rods and were identified as Azotobacter chroococcum and Azospirillum brasilense. Our results suggest that Azotobacter isolates do not have a particular affinity for sugarcane rhizospheres and that, on the contrary, Azospirillum isolates show specific association and perhaps endophytic colonization of sugarcane. However, obligate endophytes (Gluconacetobacter diazotrophicus) were not found in the apoplastic fluid of the stems and macerates extracts of sugarcane tissues with the procedure applied. Population of this microorganism might be in low number in the Spanish sugarcane varieties studied which is also discussed.  相似文献   

8.

Background and Aims

This study was aimed at assessing the diversity of putatively diazotrophic rhizobacteria associated with sunflower (Helianthus annuus L.) cropped in the south of Brazil, and to examine key plant growth promotion (PGP) characteristics of the isolates for the purposes of increasing plant productivity.

Methods

299 strains were isolated from the roots and rhizosphere of sunflower cultivated in five different areas using N-free media. 16S rDNA PCR-RFLP and 16S rRNA partial sequencing were used for identification and the Shannon index was used to evaluate bacterial diversity. Production of siderophores and indolic compounds (ICs), as well phosphate solubilization activities of each isolate were also evaluated in vitro. On the basis of multiple PGP activities, eight isolates were selected and tested for their N-fixation ability, and their capacity as potential PGPR on sunflower plants was also assessed.

Results

All except three Gram-positive strains (phylum Actinobacteria) belonged to the Gram-negative Proteobacteria subgroups [Gamma (167), Beta (78), and Alpha (50)] and the family Flavobacteriaceae (1)]. Shannon indexes ranged from 0.96 to 2.13 between the five sampling sites. Enterobacter and Burkholderia were the predominant genera isolated from roots and rhizosphere, respectively. Producers of siderophores and ICs were widely found amongst the isolates, but only 19.8% of them solubilized phosphate. About 8% of the isolates exhibited all three PGP traits, and these mostly belonged to the genus Burkholderia. Four isolates were able to stimulate the growth of sunflower plants under gnotobiotic conditions.

Conclusions

Enterobacter and Burkholderia were the dominant rhizospheric bacterial genera associated with sunflower plants. Inoculation with isolates belonging to the genera Achromobacter, Chryseobacterium, Azospirillum, and Burkholderia had a stimulatory effect on plant growth.  相似文献   

9.
The use of resistant genotypes is the preferred method to control orange rust of sugarcane (Saccharum spp) caused by Puccinia kuehnii. This approach has been adopted in Brazil but outbreaks of the disease on previously resistant varieties showed that the efficacy of this method is limited and requires a better understanding of pathogen diversity. Nevertheless, adequate molecular markers for examining pathogen diversity at population level are not available, which limits the success of orange rust control by genetic resistance. Therefore, two independent investigations were conducted to examine genetic diversity of P. kuehnii from São Paulo state, the most important sugarcane growing state of Brazil. First, simple-sequence repeat (SSR) markers were developed in the present work and genotypic diversity of orange rust isolates from different locations investigated. Second, phenotypic diversity was examined by the single-pustule inoculation technique on P. kuehnii isolates retrieved from three susceptible commercial sugarcane cultivars. A total of 96 SSR markers were generated and tested for this species. Subsequently, 29 isolates of P. kuehnii were fingerprinted with nine SSR markers to estimate the genotypic diversity by neighbour-joining and 3D principal coordinates. The 29 isolates of the pathogen clustered into four main groups, which were identified by three SSR markers (NPRL_PK_108a, NPRL_PK_162_spka and NPRL_PK_221_spka). Phenotypic data at 21 days after the single-pustule inoculation showed that P. kuehnii from highly susceptible commercial cultivars harboured a small proportion of variants capable of causing disease on resistant cultivars. A differential reaction was demonstrated for the most virulent variant in a repeated experiment confirming the existence of races within P. kuehnii in Brazil.  相似文献   

10.
There is currently an increasing demand for the characterization of endophytic bacteria isolated from different parts of plants (rhizosphere, roots, fruit, leaf) in order to improve the organic agriculture practices. The current research was performed to identify both rhizospheric bacteria isolated from the rhizosphere of Ficus carica in three different sites in the north of Tunisia and endophytic bacteria isolated from dried figs. We then characterized them for a diversity of plant growth-promoting (PGP) activities. A collection of 120 isolates from rhizospheric soil and 9 isolates from dried figs was obtained and purified. 16SrDNA gene amplification of rhizospheric bacteria revealed significant diversity and allowed for the assigning of the isolates to 6 phyla: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Representative strains of the collection (90 strains) were tested for numerous PGP activities and resistance to abiotic stresses. The most common PGP trait for all bacteria from the three regions was siderophore production (62%), followed by cellulase (38%), then protease activity (37%), then by lipases activity (17%) and lastly by solubilization of phosphates (9%). Twenty -three strains that showed most PGP traits were selected, 8 strains presented 12 or more, and 15 strains displayed between 7 and 11 of 17 PGP activities. The majority of the isolates manifested a possible adaptation to abiotic stress and unfavorable environments. PCR-DGGE analysis of soil rhizosphere of the three sites allowed also for the acquisition of a Cluster analysis of rhizospheric bacterial communities. Our current study identified and characterized for the first time in Tunisia rhizospheric and endophytic bacteria from dried fruit of Ficus carica.  相似文献   

11.
The functional diversity of endophytic and rhizospheric microorganisms associated with the promotion of plant growth includes increased availability of plant nutrients, phytohormone synthesis and phytopathogen suppression. We used the hypothesis that the unknown root and rhizospheric community associated with the Butia purpurascens palm, an endemic species of the Cerrado, could be composed of microbiota with great functional diversity. Thus, the potential of the isolates of this community for four functional traits was evaluated: solubilization of calcium phosphate (CaHPO4) and iron phosphate (FePO4), synthesis of indoleacetic acid (IAA) and suppression of seed- and fruit-spoilage fungi of B. purpurascens. A total of 166 bacterial isolates, most belonging to the phylum Proteobacteria (94%), and 46 fungal isolates (Ascomycota) were tested. None of the isolates showed the four functional traits tested, but 72% presented two traits (CaHPO4 solubilization and IAA synthesis). Fifteen fungi (27% of the isolates) presented only the trace for IAA, whereas the capacity for antibiosis was observed in only eight bacteria. CaHPO4-solubilization capacity was evidenced by all bacterial isolates and by some fungal isolates. The functional trait for IAA production was present in all isolates, and production levels were significantly above 100 μg mL?1 for some bacteria. Isolates of the genus Bacillus efficiently suppressed the growth of spoilage fungi tested, with relative inhibition rates reaching levels higher than 60% when using Bacillus subtilis. These results attest to the multifunctionality of the endophytic and rhizospheric isolates of B. purpurascens for the promotion of plant growth. This is the first study that sought to identify the root endophytic and rhizospheric microbiota associated with the B. purpurascens palm for the bioprospection of species with functional traits related to the promotion of plant growth, thus opening the way for in vivo tests in plants of commercial or ecological interest.  相似文献   

12.
13.
Until recently, diazotrophy was known in only one of the 30 formally described species of Burkholderia. Novel N2-fixing plant-associated Burkholderia species such as B. unamae, B. tropica, and B. xenovorans have been described, but their environmental distribution is scarcely known. In the present study, the occurrence of N2-fixing Burkholderia species associated with different varieties of sugarcane and maize growing in regions of Mexico and Brazil was analyzed. Only 111 out of more than 900 isolates recovered had N2-fixing ability as demonstrated by the acetylene reduction assay. All 111 isolates also yielded a PCR product with primers targeting the nifH gene, which encodes a key enzyme in the process of nitrogen fixation. These 111 isolates were confirmed as belonging to the genus Burkholderia by using a new 16S rRNA-specific primer pair for diazotrophic species (except B. vietnamiensis) and closely related nondiazotrophic Burkholderia. In Mexico, many isolates of B. unamae (predominantly associated with sugarcane) and B. tropica (more often associated with maize) were recovered. However, in Brazil B. tropica was not identified among the isolates analyzed, and only a few B. unamae isolates were recovered from one sugarcane variety. Most Brazilian diazotrophic Burkholderia isolates (associated with both sugarcane and maize plants) belonged to a novel species, as revealed by amplified 16S rRNA gene restriction profiles, 16S rRNA gene sequencing, and protein electrophoresis. In addition, transmissibility factors such as the cblA and esmR genes, identified among clinical and environmental isolates of opportunistic pathogens of B. cenocepacia and other species of the B. cepacia complex, were not detected in any of the plant-associated diazotrophic Burkholderia isolates analyzed.  相似文献   

14.
15N isotope and N balance studies performed over the last few years have shown that several Brazilian varieties of sugarcane are capable of obtaining over 60% of their nitrogen (<150 kg N ha-1 year-1) from biological nitrogen fixation (BNF). This may be due to the fact that this crop in Brazil has been systematically bred for high yields with low fertilizer N inputs. In the case of wetland rice, N balance experiments performed both in the field and in pots suggest that 30 to 60 N ha-1 crop-1 may be obtained from plant-associated BNF and that different varieties have different capacities to obtain N from this source. 15N2 incorporation studies have proved that wetland rice can obtain at least some N from BNF and acetylene reduction (AR) assays also indicate differences in N2-fixing ability between different rice varieties. However in situ AR field estimates suggest plant-associated BNF inputs to be less than 8 kg N ha-1 crop-1. The problems associated with the use of the 15N dilution technique for BNF quantification are discussed and illustrated with data from a recent study performed at EMBRAPA-CNPAB. Although many species of diazotrophs have been isolated from the rhizosphere of both sugarcane and wetland rice, the recent discovery of endophytic N2-fixing bacteria within roots, shoots and leaves of both crops suggests, at least in the case of sugarcane, that these bacteria may be the most important contributors to the observed BNF contributions. In sugarcane both Acetobacter diazotrophicus and Herbaspirillum spp. have been found within roots and aerial tissues and these microorganisms, unlike Azospirillum spp. and other rhizospheric diazotrophs, have been shown to survive poorly in soil. Herbaspirillum spp. are found in many graminaceous crops, including rice (in roots and aerial tissue), and are able to survive and pass from crop to crop in the seeds. The physiology, ecology and infection of plants by these endophytes are fully discussed in this paper. The sugarcane/endophytic diazotroph association is the first efficient N2-fixing system to be discovered associated with any member of the gramineae. As yet the individual roles of the different diazotrophs in this system have not been elucidated and far more work on the physiology and anatomy of this system is required. However, the understanding gained in these studies should serve as a foundation for the improvement/development of similar N2-fixing systems in wetland rice and other cereal crops.  相似文献   

15.
The objective of this study was the isolation and screening of actinomycete isolates for antagonistic potential and plant growth promoting activities. A total of 321 isolates were recovered from different plants, their rhizospheric soils and non-rhizospheric soils of Punjab and Himachal Pradesh regions. Out of these, 62 were endophytic, 156 were rhizospheric and 103 were non-rhizospheric isolates. In primary screening (dual culture assay), 83 isolates antagonised one or more test phytopathogenic fungi. From these active isolates, 20 were found to be antagonistic in well diffusion assay (secondary screening) and most of them demonstrated broad spectrum inhibitory activity against five to six test fungi. Studies on plant growth promoting activities revealed that 12 showed abilities to produce indole acetic acid, 10 produced siderophores and 12 showed ammonia production. Phosphate solubilisation was observed in five isolates and four fixed atmospheric N2. In addition, production of hydrolytic enzymes such as chitinase, amylase, cellulase and protease was demonstrated by five, twenty, eleven and eleven isolates, respectively. The results of this study indicate that these isolates may be used as biocontrol and plant growth promoting agents. Morphological and chemotaxonomic studies revealed that all the active isolates belonged to the genus Streptomyces  相似文献   

16.
Aspalathus linearis (burm f.), commonly known as rooibos, grows in nutrient and organic matter poor sandy soils that limit its growth. In this study, samples of nodules from both declined and healthy rooibos plants were collected to determine the frequency of nodule nitrogen-fixing and endophytic bacteria. Standard microbiological procedures as well as sequence analysis of the 16S rRNA revealed that more than 75% of the bacterial isolates from the healthy plants contained microsymbionts belonging to the Rhizobium group and the remaining 25% were characterized as Pseudomonas and Burkholderia spp. The nodule from the declined plants lacks a sufficient number of rhizobia and was mostly white in color, small and contains the free-living endospore-forming Bacillus and other endophytic Burkholderia and Pseudomonas spp. The results provide a baseline data on the microsymbionts of rooibos nodules in Citrusdal and highlighted the need for further investigation using additional techniques.  相似文献   

17.
Ninety isolates of root nodule bacteria from an invasive Mimosa pigra population in Australia were characterized by PCR assays and by sequencing of ribosomal genes. All isolates belonged to the same bacterial genus (Burkholderia) that predominates on M. pigra in its native geographic range in tropical America. However, the Australian Burkholderia strains represented several divergent lineages, none of which had a close relationship to currently known Burkholderia strains in American M. pigra populations. Inoculation of M. pigra with Australian strains resulted in equal or higher plant growth and nodule nitrogenase activity (measured by acetylene reduction assays) relative to outcomes with bacteria from M. pigra’s native geographic region. The main difference in symbiotic phenotype for bacteria from the two regions involved responses to an alternate Mimosa host species: Central American strains failed to fix nitrogen in association with Mimosa pudica, while most Australian Burkholderia isolates tested had high nodule nitrogenase activity in association with both Mimosa species. Invasive M. pigra populations in Australia have therefore acquired a diverse assemblage of nodule bacteria that are effective nitrogen-fixing symbionts, despite having a broader host range and a distant genetic relationship to bacterial strains found in the plant’s ancestral region.  相似文献   

18.
The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.  相似文献   

19.
Thirty mesophilic and thermophilic bacteria were isolated from thermobiotically digested sewage sludge in culture medium supplemented with poly-ε-caprolactone (PCL). The ability of each purified isolate to degrade PCL and to produce polymer-degrading extracellular enzymes was assessed. Isolates were characterized based on random amplified polymorphic DNA (RAPD), 16S rDNA sequence-based phylogenetic affiliation and carbohydrate-based nutritional versatility. Mesophilic isolates with ability to degrade PCL were attributed to the genera Acinetobacter, Burkholderia, Pseudomonas, and Staphylococcus. Thermophilic isolates were members of the genus Bacillus. Despite the restricted phylogenetic and genotypic diversity observed for thermophiles, their metabolic versatility and wide range of growth temperatures suggest an important activity of these organisms during the whole composting process.  相似文献   

20.
Siderophore production confers to bacteria competitive advantages to colonize plant tissues and to exclude other microorganisms from the same ecological niche. This work shows that the community of endophytic siderophore-producing bacteria (SPB) associated to Oryza sativa cultivated in Uruguayan soils is dynamic and diverse. These bacteria were present in grains, roots, and leaves, and their density fluctuated between log10 3.44 and log10 5.52 cfu g−1 fresh weight (fw) during the plant growth. Less than 10% of the heterotrophic bacteria produced siderophores in roots and leaves of young plants, but most of the heterotrophic bacteria were siderophore-producers in mature plants. According to their amplified restriction DNA ribosomal analysis (ARDRA) pattern, 54 of the 109 endophytic SPB isolated from different plant tissues or growth stages from replicate plots, were unique. Bacteria belonging to the genera Sphingomonas, Pseudomonas, Burkholderia, and Enterobacter alternated during plant growth, but the genus Pantoea was predominant in roots at tillering and in leaves at subsequent stages. Pantoea ananatis was the SPB permanently associated to any of the plant tissues, but the genetic diversity within this species—revealed by BOX-PCR fingerprinting- showed that different strains were randomly distributed along time and plant tissue, suggesting that a common trait of the species P. ananatis determined the interaction with the rice plant. Several isolates were stronger IAA producers than Azospirillum brasilense or Herbaspirillum seropedicae. In vitro inhibition assays showed that SPB of the genus Burkholderia were good antagonists of pathogenic fungi and that only one SPB isolate of the genus Pseudomonas was able to inhibit A. brasilense and H. seropedicae. These results denoted that SPB were selected into the rice plant. P. ananatis was the permanent and dominant associated species which was unable to inhibit two of the relevant plant growth-promoting bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号