首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By assaying the binding of wild-type Cro to a set of 40 mutant lambda operators in vivo, we have determined that the 14 outermost base pairs of the 17 base pair, consensus lambda operator are critical for Cro binding. Cro protein recognizes 4 base pairs in a lambda operator half-site in different ways than cI repressor. The sequence determinants of Cro binding at these critical positions in vivo are nearly perfectly consistent with the model proposed by W. F. ANDERSON, D. H. OHLENDORF, Y. TAKEDA and B. W. MATTHEWS and modified by Y. TAKEDA, A. SARAI and V. M. RIVERA for the specific interactions between Cro and its operator, and explain the relative order of affinities of the six natural lambda operators for Cro. Our data call into question the idea that lambda repressor and Cro protein recognize the consensus lambda operator by nearly identical patterns of specific interactions.  相似文献   

2.
Bacteriophage Φ11 uses Staphylococcus aureus as its host and, like lambdoid phages, harbors three homologous operators in between its two divergently oriented repressor genes. None of the repressors of Φ11, however, showed binding to all three operators, even at high concentrations. To understand why the DNA binding mechanism of Φ11 repressors does not match that of lambdoid phage repressors, we studied the N-terminal domain of the Φ11 lysogenic repressor, as it harbors a putative helix-turn-helix motif. Our data revealed that the secondary and tertiary structures of the N-terminal domain were different from those of the full-length repressor. Nonetheless, the N-terminal domain was able to dimerize and bind to the operators similar to the intact repressor. In addition, the operator base specificity, binding stoichiometry, and binding mechanism of this domain were nearly identical to those of the whole repressor. The binding affinities of the repressor and its N-terminal domain were reduced to a similar extent when the temperature was increased to 42°C. Both proteins also adequately dislodged a RNA polymerase from a Φ11 DNA fragment carrying two operators and a promoter. Unlike the intact repressor, the binding of the N-terminal domain to two adjacent operator sites was not cooperative in nature. Taken together, we suggest that the dimerization and DNA binding abilities of the N-terminal domain of the Φ11 repressor are distinct from those of the DNA binding domains of other phage repressors.  相似文献   

3.
Recently, it was proposed that DNA looping by the λ repressor (CI protein) strengthens repression of lytic genes during lysogeny and simultaneously ensures efficient switching to lysis. To investigate this hypothesis, tethered particle motion experiments were performed and dynamic CI-mediated looping of single DNA molecules containing the λ repressor binding sites separated by 2317 bp (the wild-type distance) was quantitatively analyzed. DNA containing all three intact operators or with mutated o3 operators were compared. Modeling the thermodynamic data established the free energy of CI octamer-mediated loop formation as 1.7 kcal/mol, which decreased to –0.7 kcal/mol when supplemented by a tetramer (octamer+tetramer-mediated loop). These results support the idea that loops secured by an octamer of CI bound at oL1, oL2, oR1 and oR2 operators must be augmented by a tetramer of CI bound at the oL3 and oR3 to be spontaneous and stable. Thus the o3 sites are critical for loops secured by the CI protein that attenuate cI expression.  相似文献   

4.
5.
The lon mutants of Escherichia coli grow apparently normally except that, after temporary periods of inhibition of deoxyribonucleic acid synthesis, septum formation is specifically inhibited. Under these conditions, long, multinucleate, nonseptate filaments result. The lon mutation also creates a defect such that wild-type bacteriophage λ fails to lysogenize lon mutants efficiently and consequently forms clear plaques on a lon host. Two lines of evidence suggest that this failure probably results from interference with expression of the λcI gene, which codes for repressor, or with repressor action:-(i) when a lon mutant was infected with a λcII, cIII, or c Y mutant, there was an additive effect between the lon mutation and the λc mutations upon reduction of lysogenization frequency; and (ii) lon mutants permitted the growth of the λcro mutant under conditions in which the repressor was active. The isolation of λ mutants (λtp) which gained the ability to form turbid plaques on lon cells is also reported.  相似文献   

6.
Maiti A  Roy S 《Nucleic acids research》2005,33(18):5896-5903
The specificity of protein–nucleic acid recognition is believed to originate largely from hydrogen bonding between protein polar atoms, primarily side-chain and polar atoms of nucleic acid bases. One way to design new nucleic acid binding proteins of novel specificity is by structure-guided alterations of the hydrogen bonding patterns of a nucleic acid–protein complex. We have used cI repressor of bacteriophage λ as a model system. In the λ-repressor–DNA complex, the -NH2 group (hydrogen bond donor) of lysine-4 of λ-repressor forms hydrogen bonds with the amide carbonyl atom of asparagine-55 (acceptor) and the O6 (acceptor) of CG6 of operator site OL1. Substitution of lysine-4 (two donors) by iso-steric S-(2-hydroxyethyl)-cysteine (one donor and one acceptor), by site-directed mutagenesis and chemical modification, leads to switch of binding specificity of λ-repressor from C:G to T:A at position 6 of OL1. This suggests that unnatural amino acid substitutions could be a simple way of generating nucleic acid binding proteins of altered specificity.  相似文献   

7.
The repressor gene of the Lactobacillus phage A2 has the following properties: it (i) encodes a 224-residue polypeptide with DNA binding and RecA cleavage motifs, (ii) is expressed in lysogenic cultures, and (iii) confers superinfection immunity on the host. Adjacent, but divergently transcribed, lies another open reading frame whose product resembles the λ Cro protein. In the 161-bp intergenic segment, putative promoters and operators have been detected.  相似文献   

8.
J L Betz  M Z Fall 《Gene》1988,67(2):147-158
The specific binding of dominant-negative (I-d) lactose (lac) repressors to wild-type (wt) as well as mutant (Oc) lac operators has been examined to explore the sequence-specific interaction of the lac repressor with its target. Mutant lacI genes encoding substitutions in the N-terminal 60 amino acids (aa) were cloned in a derivative of plasmid pBR322. Twelve of these lacI-d missense mutations were transferred from F'lac episomes using general genetic recombination and molecular cloning, and nine lacI missense mutations were recloned from M13-lacI phages [Mott et al., Nucl. Acids Res. 12 (1984) 4139-4152]. The mutant repressors were examined for polypeptide size and stability, for binding the inducer isopropyl-beta-D-thiogalactoside (IPTG), as well as binding to wt operator. The mutant repressors' affinities for wt operator ranged from undetectable to about 1% that of wt repressor, and the mutant repressors varied in transdominance against repressor expressed from a chromosomal lacIq gene. Six of the I-d repressors were partially degraded in vivo. All repressors bound IPTG with approximately the affinity of wt repressor. Repressors having significant affinity for wt operator or with substitutions in the presumed operator recognition helix (aa 17-25) were examined in vivo for their affinities for a series of single site Oc operators. Whereas the Gly-18-, Ser-18- and Leu-18-substituted repressors showed altered specificity for position 7 of the operator [Ebright, Proc. Natl. Acad. Sci. USA 83 (1986) 303-307], the His-18 repressor did not affect specificity. This result may be related to the greater side-chain length of histidine compared to the other amino acid substitutions.  相似文献   

9.
10.
Combinatorial mutant libraries of the single-chain 434 repressor were used to discover novel DNA-binding specificities. Members of the library contain one wild type domain and one mutant domain which are connected by a recombinant peptide linker. The mutant domain contains randomized amino acids in place of the DNA-contacting residues. The single-chain derivatives are expected to recognize artificial operators containing the DNA sequence of ACAA — 6 base-pairs — NNNN, where ACAA is bound by the wild-type and NNNN by the mutant domain. An invivo library screening method was used to isolate mutant DNA-binding domains which recognize the TTAA site of an asymmetric operator. Several mutants showed high affinity binding to the selection target and also strong (up to 80 fold) preference for TTAA over the wild type TTGT sequence. Some of the isolated mutants bound with very high affinities (10–50 pM) to operators containing the TTAC sequence, a close homologue of the TTAA selection target.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCζ and PKCλ) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKCλ in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKCλ (λKD or λΔNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKCλ, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by λKD or λΔNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKCλ was ~50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKCλ mutant that lacks the pseudosubstrate domain (λΔPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of λΔPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKCλ. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKCλ pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

12.
Site-specific recombination in bacteriophage λ involves interactions among proteins required for integration and excision of DNA molecules. We have analyzed the elements required to form an in vivo nucleoprotein complex of integrase (Int) and integration host factor (IHF). Interaction of Int with the core (the site of strand exchange) is stabilized by the flanking arm region of attL. IHF, in addition to Int, is required for efficient Int-core binding. We used the in vivo attL binding assay to characterize several Int variants for their abilities to form stable attL complexes. Substitution of Int active site tyrosine 342 by phenylalanine had no effect on the ability of the protein to form attL complexes. Three other amino acids that are completely conserved in the integrase family of recombinases (arginine 212, histidine 308, and arginine 311) were separately substituted by glutamine, leucine, and histidine, respectively. In each case, the mutant protein was altered in its ability to form attL complexes while retaining its ability to bind to the λ arm-type sites. We propose that, in addition to their role in catalysis, this triad of amino acids helps the Int protein to interact with the λ core sites.  相似文献   

13.
DNA polymerase (pol) λ is homologous to pol β and has intrinsic polymerase and terminal transferase activities. However, nothing is known about the amino acid residues involved in these activites. In order to precisely define the nucleotide-binding site of human pol λ, we have mutagenised two amino acids, Tyr505 and the neighbouring Phe506, which were predicted by structural homology modelling to correspond to the Tyr271 and Phe272 residues of pol β, which are involved in nucleotide binding. Our analysis demonstrated that pol λ Phe506Arg/Gly mutants possess very low polymerase and terminal transferase activities as well as greatly reduced abilities for processive DNA synthesis and for carrying on translesion synthesis past an abasic site. The Tyr505Ala mutant, on the other hand, showed an altered nucleotide binding selectivity to perform the terminal transferase activity. Our results suggest the existence of a common nucleotide-binding site for the polymerase and terminal transferase activities of pol λ, as well as distinct roles of the amino acids Tyr505 and Phe506 in these two catalytic functions.  相似文献   

14.
λ Exonuclease is a highly processive 5′→3′ exonuclease that degrades double-stranded (ds)DNA. The single-stranded DNA produced by λ exonuclease is utilized by homologous pairing proteins to carry out homologous recombination. The extensive studies of λ biology, λ exonuclease enzymology and the availability of the X-ray crystallographic structure of λ exonuclease make it a suitable model to dissect the mechanisms of processivity. λ Exonuclease is a toroidal homotrimeric molecule and this quaternary structure is a recurring theme in proteins engaged in processive reactions in nucleic acid metabolism. We have identified residues in λ exonuclease involved in recognizing the 5′-phosphate at the ends of broken dsDNA. The preference of λ exonuclease for a phosphate moiety at 5′ dsDNA ends has been established in previous studies; our results indicate that the low activity in the absence of the 5′-phosphate is due to the formation of inert enzyme–substrate complexes. By examining a λ exonuclease mutant impaired in 5′-phosphate recognition, the significance of catalytic efficiency in modulating the processivity of λ exonuclease has been elucidated. We propose a model in which processivity of λ exonuclease is expressed as the net result of competition between pathways that either induce forward translocation or promote reverse translocation and dissociation.  相似文献   

15.
Nucleotide sequences in two wild-type and six mutant operators in the DNA of phage λ are compared. Strikingly similar 17 base pair units are found which we identify as the repressor binding sites. Each operator contains multiple repressor binding sites separated by A-T rich spacers. Elements of 2 fold rotational symmetry are present in each of the sites. Superimposed on each operator is an E. coli RNA polymerase recognition site (promoter). Similarities in the sequences of the two λ promoters, a lac promoter, and an E. coli RNA polymerase recognition site in SV40 DNA are noted.  相似文献   

16.
Genetic recombination catalyzed by λ's Red pathway was studied in rec(+) and recA mutant bacteria by examining both intracellular λ DNA and mature progeny particles. Recombination of nonreplicating phage chromosomes was induced by double-strand breaks delivered at unique sites in vivo. In rec(+) cells, cutting only one chromosome gave nearly maximal stimulation of recombination; the recombinants formed contained relatively short hybrid regions, suggesting strand invasion. In contrast, in recA mutant cells, cutting the two parental chromosomes at non-allelic sites was required for maximal stimulation; the recombinants formed tended to be hybrid over the entire region between the two cuts, implying strand annealing. We conclude that, in the absence of RecA and the presence of non-allelic DNA ends, the Red pathway of λ catalyzes recombination primarily by annealing.  相似文献   

17.
Summary O c mutations in the operators of bacteriophage lambda have been used to analyze the functional organization of the operators. In each operator, repressor binding sites 1 and 2, as identified biochemically, were found to be primarily responsible for the repressor affinity of the operators in vitro and for the repression of lytic functions in vivo. In addition, both sites were shown to be involved in the action of cro product at the operators. The data obtained have been used to estimate the repressor affinities of the individual binding sites. These affinities suggest that repressor bound at O R1 and O R2 interacts cooperatively. The results obtained support a model for repression of the early lambda operons where repressor bound at binding sites 1 and 2 interferes with RNA polymerase binding to the promoter sites.  相似文献   

18.
N. Benson  C. Adams    P. Youderian 《Genetics》1992,130(1):17-26
The binding specificities of four mutant lambda cI repressor proteins with increased affinities for operator DNA were examined. Two mutant repressors (Glu34----Lys and Glu83----Lys) have the same specificity of binding as wild-type repressor, whereas two (Gly48----Ser and Gly48----Asn) have new binding specificities. The Gly48----Asn mutant repressor recognizes lambda operators with changes at base pair 3 with a different order of affinity than wild-type repressor, suggesting that the side chain of Asn48 makes additional specific DNA contacts at or near this base pair. When paired with a change that disrupts the specific interaction of the amino-terminal arm of lambda repressor with DNA (Lys4----Gln), one change that increases the affinity of repressor (Gly48----Ser) suppresses the binding defect of the Lys4----Gln repressor, resulting in a double mutant repressor with a new binding specificity different than that of both its parents and of wild type. These results lend strong support to the model of direct recognition of the lambda operator by lambda repressor proposed from the crystal structure of the repressor/operator complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号