共查询到20条相似文献,搜索用时 15 毫秒
1.
Morizane Y Thanos A Takeuchi K Murakami Y Kayama M Trichonas G Miller J Foretz M Viollet B Vavvas DG 《The Journal of biological chemistry》2011,286(18):16030-16038
Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway. 相似文献
2.
Luiz E. M. Cardoso Peter J. Little Mandy L. Ballinger Christina K. Chan Kathleen R. Braun Susan Potter-Perigo Karin E. Bornfeldt Michael G. Kinsella Thomas N. Wight 《The Journal of biological chemistry》2010,285(10):6987-6995
The synthesis of proteoglycans involves steps that regulate both protein and glycosaminoglycan (GAG) synthesis, but it is unclear whether these two pathways are regulated by the same or different signaling pathways. We therefore investigated signaling pathways involved in platelet-derived growth factor (PDGF)-mediated increases in versican core protein and GAG chain synthesis in arterial smooth muscle cells (ASMCs). PDGF treatment of ASMCs resulted in increased versican core protein synthesis and elongation of GAG chains attached to the versican core protein. The effects of PDGF on versican mRNA were blocked by inhibiting either protein kinase C (PKC) or the ERK pathways, whereas the GAG elongation effect of PDGF was blocked by PKC inhibition but not by ERK inhibition. Interestingly, blocking protein synthesis in the presence of cycloheximide abolished the PDGF effect, but not in the presence of xyloside, indicating that GAG synthesis that results from PKC activation is independent from de novo protein synthesis. PDGF also stimulated an increase in the chondroitin-6-sulfate to chondroitin-4-sulfate ratio of GAG chains on versican, and this effect was blocked by PKC inhibitors. These data show that PKC activation is sufficient to cause GAG chain elongation, but both PKC and ERK activation are required for versican mRNA core protein expression. These results indicate that different signaling pathways control different aspects of PDGF-stimulated versican biosynthesis by ASMCs. These data will be useful in designing strategies to interfere with the synthesis of this proteoglycan in various disease states. 相似文献
3.
Benziane B Björnholm M Pirkmajer S Austin RL Kotova O Viollet B Zierath JR Chibalin AV 《The Journal of biological chemistry》2012,287(28):23451-23463
Contraction stimulates Na(+),K(+)-ATPase and AMP-activated protein kinase (AMPK) activity in skeletal muscle. Whether AMPK activation affects Na(+),K(+)-ATPase activity in skeletal muscle remains to be determined. Short term stimulation of rat L6 myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), activates AMPK and promotes translocation of the Na(+),K(+)-ATPase α(1)-subunit to the plasma membrane and increases Na(+),K(+)-ATPase activity as assessed by ouabain-sensitive (86)Rb(+) uptake. Cyanide-induced artificial anoxia, as well as a direct AMPK activator (A-769662) also increase AMPK phosphorylation and Na(+),K(+)-ATPase activity. Thus, different stimuli that target AMPK concomitantly increase Na(+),K(+)-ATPase activity. The effect of AICAR on Na(+),K(+)-ATPase in L6 myotubes was attenuated by Compound C, an AMPK inhibitor, as well as siRNA-mediated AMPK silencing. The effects of AICAR on Na(+),K(+)-ATPase were completely abolished in cultured primary mouse muscle cells lacking AMPK α-subunits. AMPK stimulation leads to Na(+),K(+)-ATPase α(1)-subunit dephosphorylation at Ser(18), which may prevent endocytosis of the sodium pump. AICAR stimulation leads to methylation and dephosphorylation of the catalytic subunit of the protein phosphatase (PP) 2A in L6 myotubes. Moreover, AICAR-triggered dephosphorylation of the Na(+),K(+)-ATPase was prevented in L6 myotubes deficient in PP2A-specific protein phosphatase methylesterase-1 (PME-1), indicating a role for the PP2A·PME-1 complex in AMPK-mediated regulation of Na(+),K(+)-ATPase. Thus contrary to the common paradigm, we report AMPK-dependent activation of an energy-consuming ion pumping process. This activation may be a potential mechanism by which exercise and metabolic stress activate the sodium pump in skeletal muscle. 相似文献
4.
Jang WG Kim EJ Lee KN Son HJ Koh JT 《Biochemical and biophysical research communications》2011,(4):243-1009
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of Smad1/5/8 and expression of Dlx5 and Runx2, whereas compound C or dominant negative AMPK inhibited these effects. Transient transfection studies also showed that metformin increased the BRE-Luc and Runx2-Luc activities, which were inhibited by DN-AMPK or compound C. Down-regulation of Dlx5 expression by siRNA suppressed metformin-induced Runx2 expression. These results suggest that the activation of AMPK stimulates osteoblast differentiation via the regulation of Smad1/5/8-Dlx5-Runx2 signaling pathway. 相似文献
5.
Kim JH Lee JO Lee SK Moon JW You GY Kim SJ Park SH Park JM Lim SY Suh PG Uhm KO Song MS Kim HS 《The Journal of biological chemistry》2011,286(9):7567-7576
Homocysteine sulfinic acid (HCSA) is a homologue of the amino acid cysteine and a selective metabotropic glutamate receptor (mGluR) agonist. However, the metabolic role of HCSA is poorly understood. In this study, we showed that HCSA and glutamate stimulated glucose uptake in C2C12 mouse myoblast cells and increased AMP-activated protein kinase (AMPK) phosphorylation. RT-PCR and Western blot analysis revealed that C2C12 expresses mGluR5. HCSA transiently increased the intracellular calcium concentration. Although α-methyl-4-carboxyphenylglycine, a metabotropic glutamate receptor antagonist, blocked the action of HCSA in intracellular calcium response and AMPK phosphorylation, 6-cyano-7-nitroquinoxaline-2,3-dione, an AMPA antagonist, did not exhibit such effects. Knockdown of mGluR5 with siRNA blocked HCSA-induced AMPK phosphorylation. Pretreatment of cells with STO-609, a calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, blocked HCSA-induced AMPK phosphorylation, and knockdown of CaMKK blocked HCSA-induced AMPK phosphorylation. In addition, HCSA activated p38 mitogen-activated protein kinase (MAPK). Expression of dominant-negative AMPK suppressed HCSA-mediated phosphorylation of p38 MAPK, and inhibition of AMPK and p38 MAPK blocked HCSA-induced glucose uptake. Phosphorylation of protein kinase C ζ (PKCζ) was also increased by HCSA. Pharmacologic inhibition or knockdown of p38 MAPK blocked HCSA-induced PKCζ phosphorylation, and knockdown of PKCζ suppressed the HCSA-induced increase of cell surface GLUT4. The stimulatory effect of HCSA on cell surface GLUT4 was impaired in FITC-conjugated PKCζ siRNA-transfected cells. Together, the above results suggest that HCSA may have a beneficial role in glucose metabolism in skeletal muscle cells via stimulation of AMPK. 相似文献
6.
7.
Kim EK Park JM Lim S Choi JW Kim HS Seok H Seo JK Oh K Lee DS Kim KT Ryu SH Suh PG 《The Journal of biological chemistry》2011,286(27):24036-24045
Lysophosphatidic acid (LPA) is a bioactive phospholipid that affects various biological functions, such as cell proliferation, migration, and survival, through LPA receptors. Among them, the motility of cancer cells is an especially important activity for invasion and metastasis. Recently, AMP-activated protein kinase (AMPK), an energy-sensing kinase, was shown to regulate cell migration. However, the specific role of AMPK in cancer cell migration is unknown. The present study investigated whether LPA could induce AMPK activation and whether this process was associated with cell migration in ovarian cancer cells. We found that LPA led to a striking increase in AMPK phosphorylation in pathways involving the phospholipase C-β3 (PLC-β3) and calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) in SKOV3 ovarian cancer cells. siRNA-mediated knockdown of AMPKα1, PLC-β3, or (CaMKKβ) impaired the stimulatory effects of LPA on cell migration. Furthermore, we found that knockdown of AMPKα1 abrogated LPA-induced activation of the small GTPase RhoA and ezrin/radixin/moesin proteins regulating membrane dynamics as membrane-cytoskeleton linkers. In ovarian cancer xenograft models, knockdown of AMPK significantly decreased peritoneal dissemination and lung metastasis. Taken together, our results suggest that activation of AMPK by LPA induces cell migration through the signaling pathway to cytoskeletal dynamics and increases tumor metastasis in ovarian cancer. 相似文献
8.
Kulkarni SS Karlsson HK Szekeres F Chibalin AV Krook A Zierath JR 《The Journal of biological chemistry》2011,286(40):34567-34574
The 5'-nucleotidase (NT5) family of enzyme dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. We hypothesized that gene silencing of NT5 enzymes to increase the intracellular availability of AMP would increase AMP-activated protein kinase (AMPK) activity and metabolism. We determined the role of cytosolic NT5 in metabolic responses linked to the development of insulin resistance in obesity and type 2 diabetes. Using siRNA to silence NT5C2 expression in cultured human myotubes, we observed a 2-fold increase in the AMP/ATP ratio, a 2.4-fold increase in AMPK phosphorylation (Thr(172)), and a 2.8-fold increase in acetyl-CoA carboxylase phosphorylation (Ser(79)) (p < 0.05). siRNA silencing of NT5C2 expression increased palmitate oxidation by 2-fold in the absence and by 8-fold in the presence of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside. This was paralleled by an increase in glucose transport and a decrease in glucose oxidation, incorporation into glycogen, and lactate release from NT5C2-depleted myotubes. Gene silencing of NT5C1A by shRNA injection and electroporation in mouse tibialis anterior muscle reduced protein content (60%; p < 0.05) and increased phosphorylation of AMPK (60%; p < 0.05) and acetyl-CoA carboxylase (50%; p < 0.05) and glucose uptake (20%; p < 0.05). Endogenous expression of NT5C enzymes inhibited basal lipid oxidation and glucose transport in skeletal muscle. Reduction of 5'-nucleotidase expression or activity may promote metabolic flexibility in type 2 diabetes. 相似文献
9.
Persistent infection with hepatitis C virus (HCV) is closely correlated with type 2 diabetes. In this study, replication of HCV at different glucose concentrations was investigated by using J6/JFH1-derived cell-adapted HCV in Huh-7.5 cells and the mechanism of regulation of HCV replication by AMP-activated protein kinase (AMPK) as an energy sensor of the cell analyzed. Reducing the glucose concentration in the cell culture medium from 4.5 to 1.0 g/L resulted in suppression of HCV replication, along with activation of AMPK. Whereas treatment of cells with AMPK activator 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) suppressed HCV replication, compound C, a specific AMPK inhibitor, prevented AICAR's effect, suggesting that AICAR suppresses the replication of HCV by activating AMPK in Huh-7.5 cells. In contrast, compound C induced further suppression of HCV replication when the cells were cultured in low glucose concentrations or with metformin. These results suggest that low glucose concentrations and metformin have anti-HCV effects independently of AMPK activation. 相似文献
10.
Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation. 相似文献
11.
Jia Cao Shumei Meng Evan Chang Katherine Beckwith-Fickas Lishou Xiong Robert N. Cole Sally Radovick Fredric E. Wondisford Ling He 《The Journal of biological chemistry》2014,289(30):20435-20446
Metformin is a first-line antidiabetic agent taken by 150 million people across the world every year, yet its mechanism remains only partially understood and controversial. It was proposed that suppression of glucose production in hepatocytes by metformin is AMPK-independent; however, unachievably high concentrations of metformin were employed in these studies. In the current study, we find that metformin, via an AMP-activated protein kinase (AMPK)-dependent mechanism, suppresses glucose production and gluconeogenic gene expression in primary hepatocytes at concentrations found in the portal vein of animals (60–80 μm). Metformin also inhibits gluconeogenic gene expression in the liver of mice administered orally with metformin. Furthermore, the cAMP-PKA pathway negatively regulates AMPK activity through phosphorylation at Ser-485/497 on the α subunit, which in turn reduces net phosphorylation at Thr-172. Because diabetic patients often have hyperglucagonemia, AMPKα phosphorylation at Ser-485/497 is a therapeutic target to improve metformin efficacy. 相似文献
12.
Pulinilkunnil T He H Kong D Asakura K Peroni OD Lee A Kahn BB 《The Journal of biological chemistry》2011,286(11):8798-8809
AMP-activated protein kinase (AMPK), an evolutionarily conserved serine-threonine kinase that senses cellular energy status, is activated by stress and neurohumoral stimuli. We investigated the mechanisms by which adrenergic signaling alters AMPK activation in vivo. Brown adipose tissue (BAT) is highly enriched in sympathetic innervation, which is critical for regulation of energy homeostasis. We performed unilateral denervation of BAT in wild type (WT) mice to abolish neural input. Six days post-denervation, UCP-1 protein levels and AMPK α2 protein and activity were reduced by 45%. In β(1,2,3)-adrenergic receptor knock-out mice, unilateral denervation led to a 25-45% decrease in AMPK activity, protein expression, and Thr(172) phosphorylation. In contrast, acute α- or β-adrenergic blockade in WT mice resulted in increased AMPK α Thr(172) phosphorylation and AMPK α1 and α2 activity in BAT. But short term blockade of α-adrenergic signaling in β(1,2,3)-adrenergic receptor knock-out mice resulted in decreased AMPK activity in BAT, which strongly correlated with enhanced phosphorylation of AMPK on Ser(485/491), a site associated with inhibition of AMPK activity. Both PKA and AKT inhibitors attenuated AMPK Ser(485/491) phosphorylation resulting from α-adrenergic blockade and prevented decreases in AMPK activity. In vitro mechanistic studies in BAT explants showed that the effects of α-adrenergic blockade appeared to be secondary to inhibition of oxygen consumption. In conclusion, adrenergic pathways regulate AMPK activity in vivo acutely via alterations in Thr(172) phosphorylation and chronically through changes in the α catalytic subunit protein levels. Furthermore, AMPK α Ser(485/491) phosphorylation may be a novel mechanism to inhibit AMPK activity in vivo and alter its biological effects. 相似文献
13.
Irisin is a newly identified myokine that promotes the browning of white adipose tissue, enhances glucose uptake in skeletal muscle and modulates hepatic metabolism. However, the signaling pathways involved in the effects on hepatic glucose and lipid metabolism have not been resolved. This study aimed to examine the role of irisin in the regulation of hepatic glucose/lipid metabolism and cell survival, and whether adenosine monophosphate-activated protein kinase (AMPK), a master metabolic regulator in the liver, is involved in irisin’s actions. Human liver-derived HepG2 cells were cultured in normal glucose-normal insulin (NGNI) or high glucose-high insulin (HGHI/insulin-resistant) condition. Hepatic glucose and lipid metabolism was evaluated by glucose output and glycogen content or triglyceride accumulation assays, respectively. Our results showed that irisin stimulated phosphorylation of AMPK and acetyl-CoA-carboxylase (ACC) via liver kinase B1 (LKB1) rather than Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) in HepG2 cells. Irisin ameliorated hepatic insulin resistance induced by HGHI condition. Irisin reduced hepatic triglyceride content and glucose output, but increased glycogen content, with those effects reversed by dorsomorphin, an AMPK inhibitor. Furthermore, irisin also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and promoted cell survival in an AMPK-dependent manner. In conclusion, our data indicate that irisin ameliorates dysregulation of hepatic glucose/lipid metabolism and cell death in insulin-resistant states via AMPK activation. These findings reveal a novel irisin-mediated protective mechanism in hepatic metabolism which provides a scientific basis for irisin as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes mellitus. 相似文献
14.
《Bioorganic & medicinal chemistry》2020,28(5):115307
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a key role in maintaining cellular metabolism. AMP or adenosine diphosphate (ADP) levels rise during metabolic stress, such as during nutrient starvation, hypoxia and muscle contraction, and bind to AMPK to induce activity. Recently, activation of AMPK has been considered an attractive therapeutic strategy in the field of human oncology. Structural optimization of lead compound 2, a new type of AMPK activator with potent AMPK activation activity and attractive selective growth inhibition against human cancer cells, improved aqueous solubility, metabolic stability and animal pharmacokinetics (PK) and culminated in the identification of (5-{1-[(6-methoxypyridin-3-yl)methyl]piperidin-4-yl}-1H-benzimidazol-2-yl)(4-{[4-(trifluoromethyl)phenyl]methyl}piperazin-1-yl)methanone ditosylate, ASP4132 (28). Studies on ASP4132 had advanced to clinical trials for the treatment of cancer. 相似文献
15.
Jimmy R. Thériault Helen J. Palmer Debra D. Pittman 《Biochemical and biophysical research communications》2011,409(3):500
Metformin (Met), an AMP-activated protein kinase (AMPK) inducer, is primarily transported by organic cation transporters expressed at the surface of renal proximal tubular epithelial cells. However, the implication of Met in renal function remains poorly understood. Interestingly, AICAR, another AMPK inducer, has been shown to inhibit the Unfolded Protein Response (UPR) generated by tunicamycin in cardiomyocytes in an AMPK-kinase dependent fashion suggesting metformin may also block the UPR. In this work, we have examined the effect of metformin on the expression of UPR-related markers (GRP94 and CHOP) induced by glucosamine (GlcN), 2-deoxyglucose (2-DOG) and tunicamycin (TUNI) in renal proximal tubular epithelial cells and in murine mesangial cells. Met attenuated GRP94 and CHOP expression induced by GlcN and 2-DOG, but not TUNI only in renal epithelial cells, even though the AMPK activation was observed in both renal epithelial and mesangial cells. Met did not require the contribution of its AMPK kinase inducing activity to block UPR markers expression. This report has identified a novel inhibitory function of metformin on UPR, which may have a beneficial impact on kidney homeostatic function. 相似文献
16.
Yong Soon Cho Jae Il Lee Dongkyu Shin Hyun Tae Kim Tae Gyu Lee Yeh-Jin Ahn Yong-Seok Heo 《Biochemical and biophysical research communications》2010,391(1):187-24425
Acetyl-CoA carboxylases (ACCs) have been highlighted as therapeutic targets for obesity and diabetes, as they play crucial roles in fatty acid metabolism. ACC activity is regulated through the short-term mechanism of inactivation by reversible phosphorylation. Here, we report the crystal structures of the biotin carboxylase (BC) domain of human ACC2 phosphorylated by AMP-activated protein kinase (AMPK). The phosphorylated Ser222 binds to the putative dimer interface of BC, disrupting polymerization and providing the molecular mechanism of inactivation by AMPK. We also determined the structure of the human BC domain in complex with soraphen A, a macrocyclic polyketide natural product. This structure shows that the compound binds to the binding site of phosphorylated Ser222, implying that its inhibition mechanism is the same as that of phosphorylation by AMPK. 相似文献
17.
Komori T Doi A Nosaka T Furuta H Akamizu T Kitamura T Senba E Morikawa Y 《The Journal of biological chemistry》2012,287(24):19985-19996
18.
Ross FA Rafferty JN Dallas ML Ogunbayo O Ikematsu N McClafferty H Tian L Widmer H Rowe IC Wyatt CN Shipston MJ Peers C Hardie DG Evans AM 《The Journal of biological chemistry》2011,286(14):11929-11936
Inhibition of large conductance calcium-activated potassium (BKCa) channels mediates, in part, oxygen sensing by carotid body type I cells. However, BKCa channels remain active in cells that do not serve to monitor oxygen supply. Using a novel, bacterially derived AMP-activated protein kinase (AMPK), we show that AMPK phosphorylates and inhibits BKCa channels in a splice variant-specific manner. Inclusion of the stress-regulated exon within BKCa channel α subunits increased the stoichiometry of phosphorylation by AMPK when compared with channels lacking this exon. Surprisingly, however, the increased phosphorylation conferred by the stress-regulated exon abolished BKCa channel inhibition by AMPK. Point mutation of a single serine (Ser-657) within this exon reduced channel phosphorylation and restored channel inhibition by AMPK. Significantly, RT-PCR showed that rat carotid body type I cells express only the variant of BKCa that lacks the stress-regulated exon, and intracellular dialysis of bacterially expressed AMPK markedly attenuated BKCa currents in these cells. Conditional regulation of BKCa channel splice variants by AMPK may therefore determine the response of carotid body type I cells to hypoxia. 相似文献
19.
Justilien V Jameison L Der CJ Rossman KL Fields AP 《The Journal of biological chemistry》2011,286(10):8149-8157
The Rho GTPase guanine nucleotide exchange factor Ect2 is genetically and biochemically linked to the PKCι oncogene in non-small cell lung cancer (NSCLC). Ect2 is overexpressed and mislocalized to the cytoplasm of NSCLC cells where it binds the oncogenic PKCι-Par6 complex, leading to activation of the Rac1 small GTPase. Here, we identify a previously uncharacterized phosphorylation site on Ect2, threonine 328, that serves to regulate the oncogenic activity of Ect2 in NSCLC cells. PKCι directly phosphorylates Ect2 at Thr-328 in vitro, and RNAi-mediated knockdown of either PKCι or Par6 leads to a decrease in phospho-Thr-328 Ect2, indicating that PKCι regulates Thr-328 Ect2 phosphorylation in NSCLC cells. Both wild-type Ect2 and a phosphomimetic T328D Ect2 mutant bind the PKCι-Par6 complex, activate Rac1, and restore transformed growth and invasion when expressed in NSCLC cells made deficient in endogenous Ect2 by RNAi-mediated knockdown. In contrast, a phosphorylation-deficient T328A Ect2 mutant fails to bind the PKCι-Par6 complex, activate Rac1, or restore transformation. Our data support a model in which PKCι-mediated phosphorylation regulates Ect2 binding to the oncogenic PKCι-Par6 complex thereby activating Rac1 activity and driving transformed growth and invasion. 相似文献
20.
Wang A Liu M Liu X Dong LQ Glickman RD Slaga TJ Zhou Z Liu F 《The Journal of biological chemistry》2011,286(1):60-66
The natural polyphenol resveratrol (RSV) displays a wide spectrum of health beneficial activities, yet the precise mechanisms remain to be fully elucidated. Here we show that RSV promotes the multimerization and cellular levels of adiponectin in 3T3-L1 adipocytes. The stimulatory effect of RSV was not affected by knocking out Sirt1, but was diminished by suppressing the expression levels of DsbA-L, a recently identified adiponectin-interactive protein that promotes adiponectin multimerization. Suppression of the Akt signaling pathway resulted in an increase in the expression levels of DsbA-L and adiponectin. On the other hand, knocking out FOXO1 or suppressing the activity or expression levels of the AMP-activated protein kinase (AMPK) down-regulated DsbA-L and adiponectin. The stimulatory effect of RSV on adiponectin and DsbA-L expression was completely diminished in FOXO1-suppressed and AMPK-inactivated 3T3-L1 adipocytes. Taken together, our results demonstrate that RSV promotes adiponectin multimerization in 3T3-L1 adipocytes via a Sirt1-independent mechanism. In addition, we show that the stimulatory effect of RSV is regulated by both the Akt/FOXO1 and the AMPK signaling pathways. Last, we show that DsbA-L plays a critical role in the promoting effect of RSV on adiponectin multimerization and cellular levels. 相似文献