首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for complications resulting from infection with these viruses. Recently it was recommended in a number of countries including the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of immunologically naïve subjects against seasonal influenza may prevent the induction of heterosubtypic immunity against potentially pandemic strains of an alternative subtype, otherwise induced by infection with the seasonal strains.Here we show in a mouse model that the induction of protective heterosubtypic immunity by infection with a human A/H3N2 influenza virus is prevented by effective vaccination against the A/H3N2 strain. Consequently, vaccinated mice were no longer protected against a lethal infection with an avian A/H5N1 influenza virus. As a result H3N2-vaccinated mice continued to loose body weight after A/H5N1 infection, had 100-fold higher lung virus titers on day 7 post infection and more severe histopathological changes than mice that were not protected by vaccination against A/H3N2 influenza.The lack of protection correlated with reduced virus-specific CD8+ T cell responses after A/H5N1 virus challenge infection. These findings may have implications for the general recommendation to vaccinate all healthy children against seasonal influenza in the light of the current pandemic threat caused by highly pathogenic avian A/H5N1 influenza viruses.  相似文献   

2.
Since the number of human cases of infection with avian H5N1 influenza viruses is ever increasing, a pandemic outbreak caused by these viruses is feared. Therefore, in addition to virus-specific antibodies, there is considerable interest in immune correlates of protection against these viruses, which could be a target for the development of more universal vaccines. After infection with seasonal influenza A viruses of the H3N2 and H1N1 subtypes, individuals develop virus-specific cytotoxic T-lymphocyte responses, which are mainly directed against the relatively conserved internal proteins of the virus, like the nucleoprotein (NP). Virus-specific cytotoxic T lymphocytes (CTL) are known to contribute to protective immunity against infection, but knowledge about the extent of cross-reactivity with avian H5N1 influenza viruses is sparse. In the present study, we evaluated the cross-reactivity with H5N1 influenza viruses of polyclonal CTL obtained from a group of well-defined HLA-typed study subjects. To this end, the recognition of synthetic peptides representing H5N1 analogues of known CTL epitopes was studied. In addition, the ability of CTL specific for seasonal H3N2 influenza virus to recognize the NP of H5N1 influenza virus or H5N1 virus-infected cells was tested. It was concluded that, apart from some individual epitopes that displayed amino acid variation between H3N2 and H5N1 influenza viruses, considerable cross-reactivity exists with H5N1 viruses. This preexisting cross-reactive T-cell immunity in the human population may dampen the impact of a next pandemic.  相似文献   

3.
Influenza vaccines that induce greater cross-reactive or heterosubtypic immunity (Het-I) may overcome limitations in vaccine efficacy imposed by the antigenic variability of influenza A viruses. We have compared mucosal versus traditional parenteral administration of inactivated influenza vaccine for the ability to induce Het-I in BALB/c mice and evaluated a modified Escherichia coli heat-labile enterotoxin adjuvant, LT(R192G), for augmentation of Het-I. Mice that received three intranasal (i.n.) immunizations of H3N2 vaccine in the presence of LT(R192G) were completely protected against lethal challenge with a highly pathogenic human H5N1 virus and had nasal and lung viral titers that were at least 2,500-fold lower than those of control mice receiving LT(R192G) alone. In contrast, mice that received three vaccinations of H3N2 vaccine subcutaneously in the presence or absence of LT(R192G) or incomplete Freund's adjuvant were not protected against lethal challenge and had no significant reductions in tissue virus titers observed on day 5 post-H5N1 virus challenge. Mice that were i.n. administered H3N2 vaccine alone, without LT(R192G), displayed partial protection against heterosubtypic challenge. The immune mediators of Het-I were investigated. The functional role of B and CD8+ T cells in Het-I were evaluated by using gene-targeted B-cell (IgH-6(-/-))- or beta2-microglobulin (beta2m(-/-))-deficient mice, respectively. beta2m(-/-) but not IgH-6(-/-) vaccinated mice were protected by Het-I and survived a lethal infection with H5N1, suggesting that B cells, but not CD8+ T cells, were vital for protection of mice against heterosubtypic challenge. Nevertheless, CD8+ T cells contributed to viral clearance in the lungs and brain tissues of heterotypically immune mice. Mucosal but not parenteral vaccination induced subtype cross-reactive lung immunoglobulin G (IgG), IgA, and serum IgG anti-hemagglutinin antibodies, suggesting the presence of a common cross-reactive epitope in the hemagglutinins of H3 and H5. These results suggest a strategy of mucosal vaccination that stimulates cross-protection against multiple influenza virus subtypes, including viruses with pandemic potential.  相似文献   

4.
Jang YH  Byun YH  Lee YJ  Lee YH  Lee KH  Seong BL 《Journal of virology》2012,86(10):5953-5958
The rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broad reactivity to seasonal and H5 strains, including HAPI H5N1 and the avian H5N2 virus, providing complete protection against heterologous and heterosubtypic lethal challenges. Our results not only accentuate the merit of using live attenuated influenza virus vaccines in view of cross-reactivity but also represent the potential of CApH1N1 live vaccine for mitigating the clinical severity of infections that arise from reassortments between pH1N1 and highly pathogenic H5 subtype viruses.  相似文献   

5.
Recovery from live influenza virus infection is known to induce heterosubtypic immunity. In contrast, immunity induced by inactivated vaccines is predominantly subtype specific. In this study, we investigated the heterosubtypic protective immunity induced by inactivated influenza virus. Intranasal immunization of mice with inactivated influenza virus A/PR8 (H1N1) provided complete protection against the homologous virus and a drift virus within the same subtype, A/WSN (H1N1), but not against the heterosubtypic virus A/Philippines (H3N2). However, coadministration of inactivated virus with cholera toxin as an adjuvant conferred complete heterosubtypic protection, without observed illness, even under conditions of CD4+ or CD8+ T-cell depletion. Analysis of immune correlates prior to challenge and postchallenge indicated that humoral immune responses with cross-neutralizing activity in lungs and in sera play a major role in conferring protective immunity against heterosubtypic challenge. This study has significant implications for developing broadly cross-reactive vaccines against newly emerging pathogenic influenza viruses.  相似文献   

6.
Genetic mutation and reassortment of influenza virus gene segments, in particular those of hemagglutinin (HA) and neuraminidase (NA), that lead to antigenic drift and shift are the major strategies for influenza virus to escape preexisting immunity. The most recent example of such phenomena is the first pandemic of H1N1 influenza of the 21st century, which started in 2009. Cross-reactive antibodies raised against H1N1 viruses circulating before 1930 show protective activity against the 2009 pandemic virus. Cross-reactive T-cell responses can also contribute to protection, but in vivo support of this view is lacking. To explore the protection mechanisms in vivo, we primed mice with H1 and H3 influenza virus isolates and rechallenged them with a virus derived from the 2009 H1N1 A/CA/04/09 virus, named CA/E3/09. We found that priming with influenza viruses of both H1 and H3 homo- and heterosubtypes protected against lethal CA/E3/09 virus challenge. Convalescent-phase sera from these primed mice conferred no neutralization activity in vitro and no protection in vivo. However, T-cell depletion studies suggested that both CD4 and CD8 T cells contributed to the protection. Taken together, these results indicate that cross-reactive T cells established after initial priming with distally related viruses can be a vital component for prevention of disease and control of pandemic H1N1 influenza virus infection. Our results highlight the importance of establishing cross-reactive T-cell responses for protecting against existing or newly emerging pandemic influenza viruses.  相似文献   

7.
Infection with seasonal influenza A viruses induces immunity to potentially pandemic influenza A viruses of other subtypes (heterosubtypic immunity). We recently demonstrated that vaccination against seasonal influenza prevented the induction of heterosubtypic immunity against influenza A/H5N1 virus induced by infection with seasonal influenza in animal models, which correlated with the absence of virus-specific CD8(+) T cell responses. Annual vaccination of all healthy children against influenza has been recommended, but the impact of vaccination on the development of the virus-specific CD8(+) T cell immunity in children is currently unknown. Here we compared the virus-specific CD8(+) T cell immunity in children vaccinated annually with that in unvaccinated children. In the present study, we compared influenza A virus-specific cellular and humoral responses of unvaccinated healthy control children with those of children with cystic fibrosis (CF) who were vaccinated annually. Similar virus-specific CD4(+) T cell and antibody responses were observed, while an age-dependent increase of the virus-specific CD8(+) T cell response that was absent in vaccinated CF children was observed in unvaccinated healthy control children. Our results indicate that annual influenza vaccination is effective against seasonal influenza but hampers the development of virus-specific CD8(+) T cell responses. The consequences of these findings are discussed in the light of the development of protective immunity to seasonal and future pandemic influenza viruses.  相似文献   

8.
The current vaccination strategy against influenza is to induce the production of antibodies directed against surface antigens of viruses. However, the frequent changes in the surface antigens of influenza viruses allow the viruses to avoid antibody-mediated immunity. On the other hand, it is known that cytotoxic T-lymphocyte (CTL) populations directed against internal antigens of influenza A virus are broadly cross-reactive to influenza virus subtypes. In the present study, liposomal conjugates with CTL epitope peptides derived from highly conserved internal antigens of influenza viruses were evaluated for their ability to protect against infection with influenza viruses. Liposomal conjugates with peptide M1 58-66, an HLA-A*0201-binding CTL epitope present within the amino-acid sequence of the M1 coding region, successfully induced antigen-specific CD8+ T-cells and CTLs in HLA-A*0201-transgenic mice. Moreover, after nasal infection with either the H1N1 or H3N2 virus, viral replication in the lung was significantly inhibited in the immunized mice. These protective activities lasted at least 6 months after the immunization. Thus, these results suggest that liposome-coupled CTL epitope peptides derived from highly conserved internal antigens of influenza viruses might be applicable to the development of vaccines that induce protection against infection with heterosubtypic influenza viruses.  相似文献   

9.

Background

The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored.

Methodology/Principal Findings

In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge.

Conclusion/Significance

The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.  相似文献   

10.
Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate.  相似文献   

11.
Ding H  Tsai C  Zhou F  Buchy P  Deubel V  Zhou P 《PloS one》2011,6(3):e17821

Background

The spread of highly pathogenic avian influenza (HPAI) H5N1 virus in human remains a global health concern. Heterosubtypic antibody response between seasonal influenza vaccine and potential pandemic influenza virus has important implications for public health. Previous studies by Corti et al. and by Gioia et al. demonstrate that heterosubtypic neutralizing antibodies against the highly pathogenic H5N1 virus can be elicited with a seasonal influenza vaccine in humans. However, whether such response offers immune protection against highly pathogenic H5N1 virus remained to be determined.

Methodology/Principal Findings

In this study, using a sensitive influenza HA (hemagglutinin) and NA (neuraminidase) pseudotype-based neutralization (PN) assay we first confirmed that low levels of heterosubtypic neutralizing antibody response against H5N1 virus were indeed elicited with seasonal influenza vaccine in humans. We then immunized mice with the seasonal influenza vaccine and challenged them with lethal doses of highly pathogenic H5N1 virus. As controls, we immunized mice with homosubtypic H5N1 virus like particles (VLP) or PBS and challenged them with the same H5N1 virus. Here we show that low levels of heterosubtypic neutralizing antibody response were elicited with seasonal influenza vaccine in mice, which were significantly higher than those in PBS control. Among them 2 out of 27 whose immune sera exhibited similar levels of neutralizing antibody response as VLP controls actually survived from highly pathogenic H5N1 virus challenge.

Conclusions/Significance

Therefore, we conclude that low levels of heterosubtypic neutralizing antibody response are indeed elicited with seasonal influenza vaccine in humans and mice and at certain levels such response offers immune protection against severity of H5N1 virus infection.  相似文献   

12.
A/Goose/Guangdong/1/96-like H5N1 influenza viruses now circulating in southeastern China differ genetically from the H5N1 viruses transmitted to humans in 1997 but were their precursors. Here we show that the currently circulating H9N2 influenza viruses provide chickens with cross-reactive protective immunity against the currently circulating H5N1 influenza viruses and that this protective immunity is closely related to the percentage of pulmonary CD8(+) T cells expressing gamma interferon (IFN-gamma). In vivo depletion of T-cell subsets showed that the cross-reactive immunity was mediated by T cells bearing CD8(+) and T-cell receptor (TCR) alpha/beta and that the Vbeta1 subset of TCR alpha/beta T cells had a dominant role in protective immunity. The protective immunity induced by infection with H9N2 virus declined with time, lasting as long as 100 days after immunization. Shedding of A/Goose/Guangdong/1/96-like H5N1 virus by immunized chickens also increased with the passage of time and thus may play a role in the perpetuation and spread of these highly pathogenic H5N1 influenza viruses. Our findings indicate that pulmonary cellular immunity may be very important in protecting na?ve natural hosts against lethal influenza viruses.  相似文献   

13.
It is commonly perceived that the human immune system is naive to the newly emerged H5N1 virus. In contrast, most adults have been exposed to influenza A H1N1 and H3N2 viruses through vaccination or infection. Adults born before 1968 have likely been exposed to H2N2 viruses. We hypothesized that CD4(+) T cells generated in response to H1N1, H3N2, and H2N2 influenza A viruses also recognize H5N1 epitopes. Tetramer-guided epitope mapping and Ag-specific class II tetramers were used to identify H5N1-specific T cell epitopes and detect H5N1-specific T cell responses. Fifteen of 15 healthy subjects tested had robust CD4(+) T cell responses against matrix protein, nucleoprotein, and neuraminidase of the influenza A/Viet Nam/1203/2004 (H5N1) virus. These results are not surprising, because the matrix protein and nucleoprotein of influenza A viruses are conserved while the neuraminidase of the H5N1 virus is of the same subtype as that of the circulating H1N1 influenza strain. However, H5N1 hemagglutinin-reactive CD4(+) T cells were also detected in 14 of 14 subjects examined despite the fact that hemagglutinin is less conserved. Most were cross-reactive to H1, H2, or H3 hemagglutinin epitopes. H5N1-reactive T cells were also detected ex vivo, exhibited a memory phenotype, and were capable of secreting IFN-gamma, TNF-alpha, IL-5, and IL-13. These data demonstrate the presence of H5N1 cross-reactive T cells in healthy Caucasian subjects, implying that exposure to influenza A H1N1, H3N2, or H2N2 viruses through either vaccination or infection may provide partial immunity to the H5N1 virus.  相似文献   

14.
Highly pathogenic avian influenza H5N1 viruses are found chiefly in birds and have caused severe disease and death in infected humans. Development of influenza vaccines capable of inducing heterosubtypic immunity against a broad range of influenza viruses is the best option for the preparedness, since vaccination remains the principal method in controlling influenza viral infections. Here, a mOMV-adjuvanted recombinant H5N2 (rH5N2) whole virus antigen vaccine with A/Environment/Korea/W149/06(H5N1)-derived H5 HA and A/Chicken/Korea/ma116/04(H9N2)-derived N2 NA in the backbone of A/Puerto Rico/8/34(H1N1) was prepared and generated by reverse genetics. Groups of mice were vaccinated by a prime-boost regime with the rH5N2 vaccine (1.75 μg of HA with/without 10 μg mOMV or aluminum hydroxide adjuvant for comparison). At two weeks post-immunizations, vaccinated mice were challenged with lethal doses of 103.5 EID50/ml of H5N1 or H9N2 avian influenza viruses, and were monitored for 15 days. Both mOMV- and alum-adjuvant vaccine groups had high survival rates after H5N1 infection and low levels of body weight changes compared to control groups. Interestingly, the mOMV-adjuvanted group induced better cross-reactive antibody responses serologically and promoted cross-protectivity against H5N1 and H9N2 virus challenges. Our results suggest that mOMV could be used as a vaccine adjuvant in the development of effective vaccines used to control influenza A virus transmission.  相似文献   

15.

Background

Cross-immunity between seasonal and pandemic A/H1N1 influenza viruses remains uncertain. In particular, the extent that previous infection or vaccination by seasonal A/H1N1 viruses can elicit protective immunity against pandemic A/H1N1 is unclear.

Methodology/Principal Findings

Neutralizing titers against seasonal A/H1N1 (A/Brisbane/59/2007) and against pandemic A/H1N1 (A/California/04/2009) were measured using an HIV-1-based pseudovirus neutralization assay. Using this highly sensitive assay, we found that a large fraction of subjects who had never been exposed to pandemic A/H1N1 express high levels of pandemic A/H1N1 neutralizing titers. A significant correlation was seen between neutralization of pandemic A/H1N1 and neutralization of a standard seasonal A/H1N1 strain. Significantly higher pandemic A/H1N1 neutralizing titers were measured in subjects who had received vaccination against seasonal influenza in 2008–2009. Higher pandemic neutralizing titers were also measured in subjects over 60 years of age.

Conclusions/Significance

Our findings reveal that the extent of protective cross-immunity between seasonal and pandemic A/H1N1 influenza viruses may be more important than previously estimated. This cross-immunity could provide a possible explanation of the relatively mild profile of the recent influenza pandemic.  相似文献   

16.
The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years) with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es) might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA) monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI) assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918–1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs) raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009 pandemic H1N1 virus. This data provides a mechanistic basis for the protection seen in the older population, and emphasizes a rationale for including vaccination of the younger, naïve population. Our results also support the notion that pigs can act as an animal reservoir where influenza virus HAs become antigenically frozen for long periods of time, facilitating the generation of human pandemic viruses.  相似文献   

17.
Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.  相似文献   

18.

Background

Exposure to contemporary seasonal influenza A viruses affords partial immunity to pandemic H1N1 2009 influenza A virus (pH1N1) infection. The impact of antibodies to the neuraminidase (NA) of seasonal influenza A viruses to cross-immunity against pH1N1 infection is unknown.

Methods and Results

Antibodies to the NA of different seasonal H1N1 influenza strains were tested for cross-reactivity against A/California/04/09 (pH1N1). A panel of reverse genetic (rg) recombinant viruses was generated containing 7 genes of the H1N1 influenza strain A/Puerto Rico/08/34 (PR8) and the NA gene of either the pandemic H1N1 2009 strain (pH1N1) or one of the following contemporary seasonal H1N1 strains: A/Solomon/03/06 (rg Solomon) or A/Brisbane/59/07 (rg Brisbane). Convalescent sera collected from mice infected with recombinant viruses were measured for cross-reactive antibodies to pH1N1 via Hemagglutinin Inhibition (HI) or Enzyme-Linked Immunosorbent Assay (ELISA). The ectodomain of a recombinant NA protein from the pH1N1 strain (pNA-ecto) was expressed, purified and used in ELISA to measure cross-reactive antibodies. Analysis of sera from elderly humans immunized with trivalent split-inactivated influenza (TIV) seasonal vaccines prior to 2009 revealed considerable cross-reactivity to pNA-ecto. High titers of cross-reactive antibodies were detected in mice inoculated with either rg Solomon or rg Brisbane. Convalescent sera from mice inoculated with recombinant viruses were used to immunize naïve recipient Balb/c mice by passive transfer prior to challenge with pH1N1. Mice receiving rg California sera were better protected than animals receiving rg Solomon or rg Brisbane sera.

Conclusions

The NA of contemporary seasonal H1N1 influenza strains induces a cross-reactive antibody response to pH1N1 that correlates with reduced lethality from pH1N1 challenge, albeit less efficiently than anti-pH1N1 NA antibodies. These findings demonstrate that seasonal NA antibodies contribute to but are not sufficient for cross-reactive immunity to pH1N1.  相似文献   

19.
The TLR4-TRIF pathway protects against H5N1 influenza virus infection   总被引:1,自引:0,他引:1  
Prestimulation of the TLR4 pathway with lipopolysaccharide (LPS) protects mice from lethal infection with H5N1 influenza virus. Here, we reveal that the TLR4-TRIF pathway is required for this protective effect by using mice whose TLR4-related molecules were knocked out. Microarray analysis of primary mouse lung culture cells that were LPS pretreated and infected with an H5N1 virus indicated that TLR3 mRNA was upregulated. Primary lung culture cells of TLR3 knockout mice showed no response to LPS pretreatment against H5N1 virus infection, suggesting that TLR3 is also involved in the preventive effect of LPS. Our data suggest that the TLR4-TRIF axis has an important role in stimulating protective innate immunity against H5N1 influenza A virus infection and that TLR3 signaling is involved in this pathway.  相似文献   

20.
Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号