首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
4.
5.
The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.  相似文献   

6.
Karve TM  Preet A  Sneed R  Salamanca C  Li X  Xu J  Kumar D  Rosen EM  Saha T 《PloS one》2012,7(6):e37697
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.  相似文献   

7.
Toll-like receptor expression in normal ovary and ovarian tumors   总被引:1,自引:0,他引:1  
Recent studies have implicated inflammation in the initiation and progression of ovarian cancer, though the mechanisms underlying this effect are still not clear. Toll-like receptors (TLRs) allow immune cells to recognize pathogens and to trigger inflammatory responses. Tumor cell expression of TLRs can promote inflammation and cell survival in the tumor microenvironment. Here we sought to characterize the expression of TLRs in normal human ovaries, benign and malignant ovarian tumors from patients, and in established ovarian tumor cell lines. We report that TLR2, TLR3, TLR4, and TLR5 are strongly expressed on the surface epithelium of normal ovaries. In contrast to previous studies of uterus and endocervix, we found no cyclic variation in TLR expression occurred in murine ovaries. TLR2, TLR3, TLR4, and TLR5 are expressed in benign conditions, epithelial tumors, and in ovarian cancer cell lines. Variable expression of TLR6 and TLR8 was seen in benign and malignant epithelium of some patients, while expression of TLR1, TLR7, and TLR9 was weak. Normal and malignant ovarian stroma were negative for TLR expression. Vascular endothelial cells, macrophages, and occasional fibroblasts in tumors were positive. Functional activity for TLRs was demonstrated by stimulation of cell lines with specific ligands and subsequent activation and translocation of NFκB and release of the proinflammatory cytokines interleukin-6 and CCL-2. These studies demonstrate expression of multiple TLRs in the epithelium of normal ovaries and in ovarian tumor cells, and may indicate a mechanism by which epithelial tumors manipulate inflammatory pathways to facilitate tumor progression.  相似文献   

8.
Siglecs are sialic acid-recognizing animal lectins of the immunoglobulin superfamily. We have cloned and characterized a novel human molecule, Siglec-11, that belongs to the subgroup of CD33/Siglec-3-related Siglecs. As with others in this subgroup, the cytosolic domain of Siglec-11 is phosphorylated at tyrosine residue(s) upon pervanadate treatment of cells and then recruits the protein-tyrosine phosphatases SHP-1 and SHP-2. However, Siglec-11 has several novel features relative to the other CD33/Siglec-3-related Siglecs. First, it binds specifically to alpha2-8-linked sialic acids. Second, unlike other CD33/Siglec-3-related Siglecs, Siglec-11 was not found on peripheral blood leukocytes. Instead, we observed its expression on macrophages in various tissues, such as liver Kupffer cells. Third, it was also expressed on brain microglia, thus becoming the second Siglec to be found in the nervous system. Fourth, whereas the Siglec-11 gene is on human chromosome 19, it lies outside the previously described CD33/Siglec-3-related Siglec cluster on this chromosome. Fifth, analyses of genome data bases indicate that Siglec-11 has no mouse ortholog and that it is likely to be the last canonical human Siglec to be reported. Finally, although Siglec-11 shows marked sequence similarity to human Siglec-10 in its extracellular domain, the cytosolic tail appears only distantly related. Analysis of genomic regions surrounding the Siglec-11 gene suggests that it is actually a chimeric molecule that arose from relatively recent gene duplication and recombination events, involving the extracellular domain of a closely related ancestral Siglec gene (which subsequently became a pseudogene) and a transmembrane and cytosolic tail derived from another ancestral Siglec.  相似文献   

9.
Hu HY  Guo S  Xi J  Yan Z  Fu N  Zhang X  Menzel C  Liang H  Yang H  Zhao M  Zeng R  Chen W  Pääbo S  Khaitovich P 《PLoS genetics》2011,7(10):e1002327
Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%-4% of mRNA and 4%-6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.  相似文献   

10.
Konno R 《Human cell》2001,14(4):261-266
Gene expression of human ovarian carcinoma cell lines and epithelial ovarian tumors was examined by oligonucleotide microarray for about 6000 human cDNAs. (1) Comparison of gene expression between CDDP-sensitive human ovarian serous adenocarcinoma cell lines and CDDP-resistant cell lines revealed that gamma-glutamylcysteine synthetase, glutathione peroxidase-like protein, dehydrogenase (UGDH), NAD(P)H: quinoneoxireductase, glucose-6-phosphatase, ornithine decarboxylase and dihydrodiol dehydrogenase were associated with a mechanism of CDDP-resistance. Comparison of gene expression between taxol-sensitive human ovarian cell lines and taxol-resistant cell lines showed that up-regulation of 30 kinds of gene expression including MDR and semaphorin E in taxol-resistant cell lines. (2) Comparison of gene expression among serous adenocarcinomas, clear cell adenocarcinomas and non-cancerous ovarian tissues by hierarchical clustering demonstrated that clear difference between carcinomas and non-cancerous ovarian tissues but not obvious difference between serous and clear adenocarcinomas. Genes that were up- and down-regulated specifically in these two types of ovarian carcinomas were further selected by the criteria that difference in the mRNA level by more than 4-fold between tumors and non-cancerous tissues. Tissue type specific alterations of gene expression are likely to play important roles in the carcinogenesis of epithelial ovarian tumors. cDNA microarray is a powerful and high-throughput tool to analyze gene expression of cancer development.  相似文献   

11.
The primate SIGLEC12 gene encodes one of the CD33-related Siglec family of signaling molecules in immune cells. We had previously reported that this gene harbors a human-specific missense mutation of the codon for an Arg residue required for sialic acid recognition. Here we show that this R122C mutation of the Siglec-XII protein is fixed in the human population, i.e. it occurred prior to the origin of modern humans. Additional mutations have since completely inactivated the SIGLEC12 gene in some but not all humans. The most common inactivating mutation with a global allele frequency of 58% is a single nucleotide frameshift that markedly shortens the open reading frame. Unlike other CD33-related Siglecs that are primarily found on immune cells, we found that Siglec-XII protein is expressed not only on some macrophages but also on various epithelial cell surfaces in humans and chimpanzees. We also found expression on certain human prostate epithelial carcinomas and carcinoma cell lines. This expression correlates with the presence of the nonframeshifted, intact SIGLEC12 allele. Although SIGLEC12 allele status did not predict prostate carcinoma incidence, restoration of expression in a prostate carcinoma cell line homozygous for the frameshift mutation induced altered regulation of several genes associated with carcinoma progression. These stably transfected Siglec-XII-expressing prostate cancer cells also showed enhanced growth in nude mice. Finally, monoclonal antibodies against the protein were internalized by Siglec-XII-expressing prostate carcinoma cells, allowing targeting of a toxin to such cells. Polymorphic expression of Siglec-XII in humans thus has implications for prostate cancer biology and therapeutics.  相似文献   

12.
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary ovarian cancers. Here, we used a co-culture approach to study the metabolic effects of BRCA1-null ovarian cancer cells on adjacent tumor-associated stromal fibroblasts. Our results directly show that BRCA1-null ovarian cancer cells produce large amounts of hydrogen peroxide, which can be abolished either by administration of simple antioxidants (N-acetyl-cysteine; NAC) or by replacement of the BRCA1 gene. Thus, the BRCA1 gene normally suppresses tumor growth by functioning as an antioxidant. Importantly, hydrogen peroxide produced by BRCA1-null ovarian cancer cells induces oxidative stress and catabolic processes in adjacent stromal fibroblasts, such as autophagy, mitophagy and glycolysis, via stromal NFκB activation. Catabolism in stromal fibroblasts was also accompanied by the upregulation of MCT4 and a loss of Cav-1 expression, which are established markers of a lethal tumor microenvironment. In summary, loss of the BRCA1 tumor suppressor gene induces hydrogen peroxide production, which then leads to metabolic reprogramming of the tumor stroma, driving stromal-epithelial metabolic coupling. Our results suggest that new cancer prevention trials with antioxidants are clearly warranted in patients that harbor hereditary/familial BRCA1 mutations.  相似文献   

13.
14.
Paired immune receptors display near-identical extracellular ligand-binding regions but have intracellular sequences with opposing signaling functions. While inhibitory receptors dampen cellular activation by recognizing self-associated molecules, the functions of activating counterparts are less clear. Here, we studied the inhibitory receptor Siglec-11 that shows uniquely human expression in brain microglia and engages endogenous polysialic acid to suppress inflammation. We demonstrated that the human-specific pathogen Escherichia coli K1 uses its polysialic acid capsule as a molecular mimic to engage Siglec-11 and escape killing. In contrast, engagement of the activating counterpart Siglec-16 increases elimination of bacteria. Since mice do not have paired Siglec receptors, we generated a model by replacing the inhibitory domain of mouse Siglec-E with the activating module of Siglec-16. Siglec-E16 enhanced proinflammatory cytokine expression and bacterial killing in macrophages and boosted protection against intravenous bacterial challenge. These data elucidate uniquely human interactions of a pathogen with Siglecs and support the long-standing hypothesis that activating counterparts of paired immune receptors evolved as a response to pathogen molecular mimicry of host ligands for inhibitory receptors.  相似文献   

15.
Most mammalian cell surfaces display two major sialic acids (Sias), N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans lack Neu5Gc due to a mutation in CMP-Neu5Ac hydroxylase, which occurred after evolutionary divergence from great apes. We describe an apparent consequence of human Neu5Gc loss: domain-specific functional adaptation of Siglec-9, a member of the family of sialic acid-binding receptors of innate immune cells designated the CD33-related Siglecs (CD33rSiglecs). Binding studies on recombinant human Siglec-9 show recognition of both Neu5Ac and Neu5Gc. In striking contrast, chimpanzee and gorilla Siglec-9 strongly prefer binding Neu5Gc. Simultaneous probing of multiple endogenous CD33rSiglecs on circulating blood cells of human, chimp, or gorilla suggests that the binding differences observed for Siglec-9 are representative of multiple CD33rSiglecs. We conclude that Neu5Ac-binding ability of at least some human CD33rSiglecs is a derived state selected for following loss of Neu5Gc in the hominid lineage. These data also indicate that endogenous Sias (rather than surface Sias of bacterial pathogens) are the functional ligands of CD33rSiglecs and suggest that the endogenous Sia landscape is the major factor directing evolution of CD33rSiglec binding specificity. Exon-1-encoded Sia-recognizing domains of human and ape Siglec-9 share only approximately 93-95% amino acid identity. In contrast, the immediately adjacent intron and exon 2 have the approximately 98-100% identity typically observed among these species. Together, our findings suggest ongoing adaptive evolution specific to the Sia-binding domain, possibly of an episodic nature. Such domain-specific divergences should also be considered in upcoming comparisons of human and chimpanzee genomes.  相似文献   

16.
Aromatase expression in ovarian epithelial cancers   总被引:6,自引:0,他引:6  
Our study focused on aromatase cytochrome P450 (CYP19) expression in ovarian epithelial normal and cancer cells and tissues. Aromatase mRNA expression was analyzed by real-time PCR in ovarian epithelial cancer cell lines, in human ovarian surface epithelial (HOSE) cell primary cultures, and in ovarian tissue specimens (n=94), including normal ovaries, ovarian cysts and cancers. Aromatase mRNA was found to be expressed in HOSE cells, in BG1, PEO4 and PEO14, but not in SKOV3 and NIH:OVCAR-3 ovarian cancer cell lines. Correlation analysis of aromatase expression was performed according to clinical, histological and biological parameters. Aromatase expression in ovarian tissue specimens was higher in normal ovaries and cysts than in cancers (P<0.0001). Using laser capture microdissection in normal postmenopausal ovaries, aromatase was found to be predominantly expressed in epithelial cells as compared to stromal component. Using immunohistochemistry (IHC), aromatase was also detected in the epithelium component. There was an inverse correlation between aromatase and ERalpha expression in ovarian tissues (P<0.001, r=-0.34). In the cancer group, no significant differences in aromatase expression were observed according to tumor histotype, grade, stage and survival. Aromatase activity was evaluated in ovarian epithelial cancer (OEC) cell lines by the tritiated water assay and the effects of third-generation aromatase inhibitors (AIs) on aromatase activity and growth were studied. Letrozole and exemestane were able to completely inhibit aromatase activity in BG1 and PEO14 cell lines. Interestingly, both AI showed an antiproliferative effect on the estrogen responsive BG1 cell line co-expressing aromatase and ERalpha. Aromatase expression was found in ovarian epithelial normal tissues and in some ovarian epithelial cancer cells and tissues. This finding raises the possibility that some tumors may respond to estrogen and provides a basis for ascertaining an antimitogenic effect of AI in a subgroup of ovarian epithelial cancers.  相似文献   

17.
18.
Murine ovarian folliculogenesis commences after birth involving oocyte growth, somatic cell differentiation and structural remodeling of follicle stromal boundaries. The extracellular metalloproteinase ADAMTS-1 has activity against proteoglycans and collagen and is produced by the granulosa cells of ovarian follicles. Mice with ADAMTS-1 gene disruption are subfertile due to an unknown mechanism resulting in severely reduced ovulation. Here we show that ADAMTS-1 is necessary for structural remodeling during ovarian follicle growth. A significant reduction in the number of healthy growing follicles and corresponding follicle dysmorphogenesis commencing at the stage of antrum formation was identified in ADAMTS-1-/- ovaries. Morphological analysis and immunostaining of basement membrane components identified stages of follicle dysgenesis from focal disruption in ECM integrity to complete loss of follicular structures. Cells expressing the thecal marker Cyp-17 were lost from dysgenic regions, while oocytes and dispersed cells expressing the granulosa cell marker anti-mullerian hormone persisted in ovarian stroma. Furthermore, we found that the ovarian lymphatic system develops coincidentally with follicular development in early postnatal life but is severely delayed in ADAMTS-1-/- ovaries. These novel roles for ADAMTS-1 in structural maintenance of follicular basement membranes and lymphangiogenesis provide new mechanistic understanding of folliculogenesis, fertility and disease.  相似文献   

19.
Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation.  相似文献   

20.
Summary The expression of cytokeratin, epithelial membrane antigen, Leu-M1, B72.3, carcinoembryonic antigen, human placental lactogen, proliferating cell nuclear antigen, p53, and ovarian carcinoma-associated antigen OC-125 was evaluated in inclusion cysts in contralateral ovaries of patients with unilateral ovarian carcinoma. The findings were compared with the findings in inclusion cysts in ovaries of patients without ovarian carcinoma. Although there was more frequent expression of tumour markers B72.3 and CEA in patients with ovarian carcinoma, these differences did not reach statistical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号