首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red fox (Vulpes vulpes) shares similar prey preferences and co-occurs with several other carnivores, and is together with pine marten (Martes martes), the most common mesocarnivore in the northern boreal forest. Voles are important prey for both species, but it is unclear to what extent they compete for the same food resources in winter. Here, we use 2139 km and 533 km of meticulous snow tracking of red foxes and pine martens to evaluate their food niches. We measured hunting and digging behaviour, whether successful or not, and the effect of snow depth and temperature. Pine martens were restricted to forested habitats, whereas red foxes used a wide range of habitats. Red foxes were found to dig more often than pine martens, 0.67 vs. 0.39 digging events per kilometre. Hunting was less common and similar in both species, about 0.1 hunting event per kilometre. Pine martens were more efficient in hunting and finding food remains compared to red foxes. Increasing snow depth reduced hunting success and also reduced dig success of red foxes. Food niche overlap was small. Red foxes used mostly voles and carrion remains of ungulates, whereas pine martens used cached eggs and small birds. We suggest that caching eggs is an important strategy for pine martens to survive winter in northern latitudes. Snow depth was important for capturing voles, and thick snow cover appeared to mask the effect of vole peaks. Intensified land use, as clear-cutting and leaving slaughter remains from harvest, will benefit red foxes on the expense of pine martens. The ongoing climate change with warmer winters and less snow will likely further benefit the red fox.  相似文献   

2.
1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3.5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.  相似文献   

3.
Interactions between wild carnivore abundance and landscape composition in agricultural landscapes are poorly understood despite their importance to both production and conservation. In Australia, introduced red foxes (Vulpes vulpes) prey on both native species and lambs in the temperate agricultural regions. Historically these areas were extensively cleared of native vegetation. Recently revegetation programmes have been implemented, but there is concern that this may benefit foxes and hence increase their impacts. We used an artificial prey placed in eight revegetated (6–12% cover) and 10 cleared (0–1.5% cover) landscapes of ~700 ha to assess how these landscapes influenced fox predation rates. In June and August 2006 (winter) when we expect fox populations to be relatively stable following juvenile dispersal, predation rates were 1.5–2 times higher in revegetated landscapes than in cleared landscapes. We found no evidence of microhabitat effects on predation rates suggesting these landscape‐level differences were probably due to differences in fox population density. In April 2007 (autumn) the results were more variable, possibly indicating more transient populations including dispersing juveniles at this time. Our results suggest that the impact of foxes on highly vulnerable prey could increase with revegetation. However, the benefits of revegetation to prey may offset negative impacts of foxes and future work is required to assess the likely net effects.  相似文献   

4.
Feeding ecology of red fox Vulpes vulpes was studied by scat analysis and snow-tracking m primeval temperate forest and adjacent meadows during four years (1985/86-1988/89) Winters varied from mild to unusually severe Main food resources for foxes were rodents of open meadows and river valleys (root vole Microtus oeconomus ). forest rodents (bank vole Clethrionomys glareolus and yellow-necked mouse Apodemus flavicollis ), hare Lepus europaetis and carcasses of wild boar Sus scrofa and red deer Cervus elaphus either killed by wolves and lynx or that had died from inanition Composition of fox diet m four cold seasons (autumn-winter) was compared to the abundance of main food resources Prolonged, sharp decline of Microtus was followed by only a twofold decrease of its share in fox diet Foxes continued to prey on declining Microlus The changes in the proportions of forest rodents and hare in fox diet clearly followed the fluctuations in numbers of these two prey Carcasses were alternative, buffer food to foxes and were taken considerably when Microlus and other prey were in low numbers or poorly accessible The depth of snow was the most important factor restricting foxes access to rodents Snow-tracking revealed that foxes dwelling in the forest widely used adjacent open areas In open meadows foxes mainly hunted for rodents, while in the forest the most significant foraging activity was scavenging Seasonal analysis of fox diet revealed that consumption of Microlus by foxes was stable throughout the year (37-47% of biomass consumed) Bank vole significantly contributed to fox diet in autumn, and hare in summer only Scavenging was most pronounced in winter and spring when carcasses made up 30% of biomass taken  相似文献   

5.
Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.  相似文献   

6.
Seasonal changes in spatial distribution of search effort of birds that prey on small mammals were studied in two structurally different coniferous forest habitats in the northern boreal zone in SE Norway. During the season with snow cover both the proportion of Microtus relative to that of Clethrionomys in the predators' diet, and their use of a clear-cut relative to that of older forest were lower than during the snow-free season. This was related to a lower relative availability of prey ( Microtus agrestis and M. oeconomus ) in the clear-cut when the ground was snow-covered than when it was snow-free. Based on this local pattern I suggest the following explanation for differences in migratory strategy between raptors that prey on small mammals in Fennoscandian boreal zones: species that migrate to snow-free areas in winter are either adapted to hunt by the energetically expensive method of quartering in open grassland habitats, where prey ( Microtus ) availability is relatively low during periods with snow cover (hen harrier Circus cyaneus , short-eared owl Asio flammeus , and longeared owl A. otus ), or by sit-and-wait in open grassland and forest habitats, the latter with relatively high prey availability during periods with snow cover, but unable to locate concealed prey (kestrel Falco tinnuculus , common buzzard Buteo huteo , and roughlegged buzzard B. lagopus ). In contrast, species that remain in areas with permanent snow cover during winter use the energetically cheap sit-and-wait tactic, and are able to hunt in closed forest habitat and localize concealed prey (the remaining owl species). Interspecific differences in prey availability as determined by hunting habitat and hunting mode is probably more important in shaping the migration patterns of Fennoscandian owls than is nest site availability.  相似文献   

7.
The diet of the red fox Vulpes vulpes was investigated in five regions of northeastern Poland by stomach content analysis of 224 foxes collected from hunters. The red fox is expected to show the opportunistic feeding habits. Our study showed that foxes preyed mainly on wild prey, with strong domination of Microtus rodents, regardless of sex, age, month and habitat. Voles Microtus spp. were found in 73% of stomachs and constituted 47% of food volume consumed. Other food items were ungulate carrion (27% of volume), other mammals (11%), birds (9%), and plant material (4%). Sex- and age-specific differences in dietary diversity were found. Adult males and juvenile foxes had larger food niche breadths than adult females and their diets highly overlapped. Proportion of Microtus voles increased from autumn to late winter. Significant habitat differences between studied regions were found. There was a tendency among foxes to decrease consumption of voles with increasing percentage of forest cover. Based on our findings, red foxes in northeastern Poland can be recognized as a generalist predators, consuming easily accessible and abundant prey. However, high percentage of voles consumed regardless of age, sex, month, or habitats may indicate red fox specialization in preying on Microtus rodents.  相似文献   

8.
Many species of colonial ground-nesting birds are known to be sensitive to predation by terrestrial predators. The response of prey under the pressure of predation can either be direct (depletion of prey) or indirect due to prey avoiding the predator. We studied the recolonization of arctic foxes into a large and growing breeding colony of lesser black-backed gulls. The gull colony reached the size of 20,000 pairs during the period of no foxes. The number of breeding gulls continued to increase after the colonization of foxes and reached a maximum of 40,000 pairs about 15 years later. During the same time period, the spatial coverage of the gull colony shrunk from 31.4 down to 18.6 km2, and the change in distribution was closely linked with position of fox dens, which ranged in number from one to three annually. In 2005, the number of breeding gulls decreased slightly with an ongoing shrinkage in spatial coverage. Food analyses from fox scats and stomachs showed that birds of the order Charadriiformes, particularly gulls, were the key prey item. Survival rates of gull nests were higher in the middle of the colony than at the colony edge close to a fox den. The colony area lost could be explained solely by the number of eggs removed by foxes but is unlikely, e.g., due to reclutching. We suggest that intraspecific predation contributes additionally to the effects of direct fox predation although to an unknown degree.  相似文献   

9.
Red fox Vulpes vulpes predation on roe deer Capreolus capreolus fawns has the potential to strongly affect prey population dynamics, but it is unclear whether this relationship is symmetrical or not. We analysed the spring–summer diet of adult foxes and of their cubs in a fragmented agricultural area of southeastern Norway, where a parallel study showed that the predator kills annually 25% of the radio-monitored roe deer fawns. The overall diet was highly varied and was dominated by small mammals (33% volume), especially Microtus agrestis, and medium-large mammals (25%), largely represented by fawns. The frequency of occurrence (FO) of fawns in the diet of adult foxes was highest in early spring, thus, supporting previous studies showing that the predator started actively hunting for fawns from the very beginning of the birth season. During the summer, the FO of both fawns and small mammals markedly declined, while that of berries and invertebrates increased. As expected for central-place foragers, cubs consumed a higher proportion of large prey items compared to adults. In particular, 25% of scats from cubs—versus 9% from adults—contained roe deer remains, suggesting a high profitability of fawns for vixens raising offspring. However, considering the wide food spectrum and the availability of several large prey items in our study area, it seems unlikely that the importance of fawns to the diet and population dynamics of red foxes could be as great as the impact of the predator on roe deer populations. This asymmetrical relationship implies that there are unlikely to be any stabilising feedback mechanisms in the predator–prey relationship.  相似文献   

10.
Predation by red fox (Vulpes vulpes) is the most important mortality cause for neonatal roe deer (Capreolus capreolus) in Scandinavia. With the objective of investigating how the fox finds fawns and how antipredatory behaviour of roe deer females influences choice of hunting method, I analysed observations of interactions between red fox and roe deer females. The observations were collected over 14 years in a mixed forest/agricultural landscape in Sweden. Of 49 fox–doe encounters, the doe attacked the fox in 59%. In 90% of these attacks the fox was successfully deterred. In two observations a doe saved a fawn attacked by a fox. Two hunting methods used by the fox were discerned. In 28 cases foxes searched the ground, and in 18 cases they surveyed open areas, often from a forest edge. The latter behaviour seemed more directed at fawns and was seen leading to a capture attempt. Searching seemed less efficient and also difficult to conduct due to the aggressiveness of does. A surveying sit-and-wait type of hunting method thus appeared as the most successful. The possibility to use this method could explain why roe deer fawns are more vulnerable to fox predation in open habitats.  相似文献   

11.
Five hundred and thirteen fleas, of eight different species, were collected from a sample of 252 foxes killed in suburban London. 25–8% of foxes carried fleas, with a mean of 204 fleas per fox. Levels of infestation of male and female hosts did not differ significantly. Possible sources of the fleas infesting foxes are discussed with respect to their seasonal occurrence and fox prey composition. No evidence was found to support the suggestion that foxes obtain the majority of their fleas from prey items, although occasional heavy infestations of some flea species were probably derived from recent meals. Although Pulex irritans, Paraceras m. melis and Ctenocephalides canis , which contributed 35 % of the flea epifauna, could be considered parasitic on the fox, it seems probable that foxes pick up the majority of their fleas from the habitat through which they move. Thus, two particularly heavily infested categories of foxes were found: (1) juveniles during July-September, their fleas probably being accumulated during exploratory and play activities, and (2) all animals during the period October-December.  相似文献   

12.
We examined chase distances of gray wolves Canis lupus Linnaeus, 1758 hunting moose Alces alces and roe deer Capreolus capreolus, and recorded details of encounters between wolves and prey on the Scandinavian Peninsula, 1997–2003. In total, 252 wolf attacks on moose and 64 attacks on roe deer were registered during 4200 km of snow tracking in 28 wolf territories. Average chase distances were 76 m for moose and 237 m for roe deer, a difference likely due to variation in body size and vigilance between prey species. A model including prey species, outcome of the attack, and snow depth explained 15–19% of the variation found in chase distances, with shorter chase distances associated with greater snow depth and with successful attacks on moose but not on roe deer. Wolf hunting success did not differ between prey species (moose 43%, roe deer 47%) but in 11% of the wolf attacks on moose at least one moose was injured but not killed, whereas no injured roe deer survived. Compared with most North American wolf studies chase distances were shorter, hunting success was greater, and fewer moose made a stand when attacked by wolves in our study. Differences in wolf encounters with moose and roe deer likely result from different anti-predator behaviour and predator-prey history between prey species.  相似文献   

13.
In the twentieth century, red fox (Vulpes vulpes) expanded into the Canadian Arctic, where it competes with arctic fox (Vulpes lagopus) for food and shelter. Red fox dominates in physical interactions with the smaller arctic fox, but little is known about competition between them on the tundra. On Hershel Island, north Yukon, where these foxes are sympatric, we focused on natal den choice, a critical aspect of habitat selection. We tested the hypothesis that red fox displaces arctic fox from dens in prey-rich habitats. We applied an approach based on model comparisons to analyse a 10-year data set and identify factors important to den selection. Red fox selected dens in habitats that were more prey-rich in spring. When red foxes reproduced, arctic fox selected dens with good springtime access, notably many burrows unblocked by ice and snow. These provided the best refuge early in the reproductive season. In the absence of red foxes, arctic foxes selected dens offering good shelter (i.e. large isolated dens). Proximity to prey-rich habitats was consistently less important than the physical aspects of dens for arctic fox. Our study shows for the first time that red foxes in the tundra select dens associated primarily with prey-rich areas, while sympatric arctic foxes do not. These results fit a model of red fox competitively interfering with arctic fox, the first detailed study of such competition in a true arctic setting.  相似文献   

14.
We compared movement patterns and rhythms of activity of a top predator, the Iberian lynx Lynx pardinus, a mesopredator, the red fox Vulpes vulpes, and their shared principal prey, the rabbit Oryctolagus cuniculus, in relation to moon phases. Because the three species are mostly nocturnal and crepuscular, we hypothesized that the shared prey would reduce its activity at most risky moon phases (i.e. during the brightest nights), but that fox, an intraguild prey of lynx, would avoid lynx activity peaks at the same time. Rabbits generally moved further from their core areas on darkest nights (i.e. new moon), using direct movements which minimize predation risk. Though rabbits responded to the increased predation risk by reducing their activity during the full moon, this response may require several days, and the moon effect we observed on the rabbits had, therefore, a temporal gap. Lynx activity patterns may be at least partially mirroring rabbit activity: around new moons, when rabbits moved furthest and were more active, lynxes reduced their travelling distances and their movements were concentrated in the core areas of their home ranges, which generally correspond to areas of high density of rabbits. Red foxes were more active during the darkest nights, when both the conditions for rabbit hunting were the best and lynxes moved less. On the one hand, foxes increased their activity when rabbits were further from their core areas and moved with more discrete displacements; on the other hand, fox activity in relation to the moon seemed to reduce dangerous encounters with its intraguild predator.  相似文献   

15.
Understanding how animals utilize their habitat provides insights about their ecological needs and is of importance for both theoretical and applied ecology. As changing seasons impact prey habitat selection and vegetation itself, it is important to understand how seasonality impacts microhabitat choice in optimal foragers and their prey. We followed habituated bat‐eared foxes (Otocyon megalotis) in the Kalahari, South Africa, to study their seasonal habitat selection patterns and relate them to the habitat preferences of their main prey, termites (Hodotermes mossambicus). We used Resource Selection Functions (RSFs) to study bat‐eared foxes’ 3rd‐ and 4th‐order habitat selection by comparing used locations to random ones within their home ranges. Third‐order habitat selection for habitat type and composition was weak and varied little between seasons. We found that patterns of fox habitat selection did not mirror habitat selection of Hodotermes (quantified using RSFs), even when feeding on them (4th‐order). Taken together, these results might indicate that bat‐eared foxes’ food resources are homogenously distributed across habitats and that prey other than Hodotermes play an important role in bat‐eared foxes’ space use.  相似文献   

16.
ABSTRACT The corsac fox (Vulpes corsac) and red fox (Vulpes vulpes) range widely across northern and central Asia and may be declining in many regions due to overhunting and other causes. However, details of the fundamental causes of survival and mortality of both species remain largely unquantified, but may be crucial for understanding interspecific relationships and developing effective conservation actions. We studied a radiomarked population of sympatric corsac and red foxes in central Mongolia to quantify survival and cause-specific mortality rates from April 2005 to April 2007. Survival probability was 0.34 for corsacs (n = 18) and 0.46 for red foxes (n = 17) and did not vary by year within or between each species. Among both foxes, mortality occurred mainly from hunting by humans, but also from predation by larger canids and unknown causes. Our results suggest that illegal human hunting represents the principal source of mortality for both species and that a recently initiated ranger patrol program in the study area did not affect fox survival. As such, more stringent protective measures will likely be necessary to halt declines of both foxes. Our results also suggest that interference competition occurs between species as red foxes killed but did not consume corsacs. Our results will be useful for developing science-based management strategies to protect foxes in Mongolia, and in understanding the competitive relationships between them.  相似文献   

17.
We investigated diet composition, habitat selection and spatial behaviour of the red fox (Vulpes vulpes) in relation to the availability of wader nests in a coastal polder area in southwest Denmark. The predatory role of the red fox in wet grassland ecosystems has profound implications for conservation status of declining populations of grassland breeding waders. However, few studies have focussed on the foraging ecology and behaviour of the red fox in these landscapes. Faecal analyses revealed that fox diet consisted of birds (43 % of prey remains?/?32 % of biomass), rodents (39 %?/?21 %), sheep (mainly as carrion, 14 %?/?41 %) and lagomorphs (4 %?/?7 %). Charadriiformes (including waders) comprised 3–12 % of prey remains throughout the year. Telemetry data and spotlight counts indicated that foxes did not select areas with high densities of breeding waders, suggesting that foxes did not target wader nests while foraging. Foxes maintained stable home ranges throughout their lives, indicating that the area sustained a permanent fox population all year round. The population densities, estimated from spotlight surveys, were 0.74 visible foxes km?2 (95 % CI; 0.34–1.61) on the preferred breeding habitat for waders and 1.21 km?2 in other open habitats such as cultivated fields. Our results indicate that red fox predation on wader nests is incidental, consistent with the notion that red foxes are generalist predators that opportunistically subsist on many prey groups.  相似文献   

18.
We examined how large seasonal influxes of migratory prey influenced population dynamics of arctic foxes and how this varied with fluctuations in small mammal (lemming and vole) abundance—the main prey of arctic foxes throughout most of their range. Specifically, we compared how arctic fox abundance, breeding density and litter size varied inside and outside a large goose colony and in relation to annual variation in small mammal abundance. Information-theoretic model selection showed that (1) breeding density and fox abundance were 2–3 times higher inside the colony than they were outside the colony and (2) litter size, breeding density and annual variation in fox abundance in the colony tracked fluctuations in lemming abundance. The influence of lemming abundance on reproduction and abundance of arctic foxes outside the colony was inconclusive, largely because fox densities outside the colony were low, which made it difficult to detect such relationships. Lemming abundance was, thus, the main factor governing reproduction and abundance of arctic foxes in the colony, whereas seasonal influxes of geese and their eggs provided foxes with external subsidies that elevated breeding density and fox abundance above that which lemmings could support. This study highlights (1) the relative importance of migratory prey and other foods on the abundance and reproduction by local consumers and (2) how migratory animals function as vectors of nutrient transfer between distant ecosystems such as Arctic environments and wintering areas by geese thousands of kilometres to the south.  相似文献   

19.
Abstract: Range expansion and population increase by coyotes (Canis latrans), reduced hunting and trapping, and intensified agricultural practices in the Midwest have altered red fox (Vulpes vulpes) mortality, although relative impacts of these factors are unknown. We examined mortality causes and survival of red foxes in urban and rural agricultural areas of Illinois, using radio telemetry data from 335 foxes (Nov 1996 to May 2002). We used Akaike's Information Criterion to evaluate six survival models for foxes reflecting 1) environmental effects, 2) intrinsic effects, 3) temporal effects, 4) behavioral effects, 5) social effects, and 6) a global model. Environmental and intrinsic models of survival were optimal for adult foxes. Adult foxes with low (0-20%) and high (80-100%) percentages of row crops in their home ranges had higher survival than adults with moderate percentages (40-70%). Heavier adults at capture also survived better. A global model (all covariates) was optimal for juvenile foxes. Higher juvenile survival associated with larger litters, lower body fat, and reduced dispersal time. Yearly survival ranged from 0.18 for rural male juveniles to 0.44 for rural female adults. Adult survival rates (0.35) were 11% higher than juvenile survival rates (0.24). Yearly survival varied for urban foxes due to cyclic outbreaks of sarcoptic mange (Sarcoptes scabei). Thus, summer survival (May-Sep) of urban juveniles ranged from 0.10 (mange present) to 0.83 (no mange recorded). Mange was the most common (45% of all fatalities) source of mortality for urban foxes, followed by road kill (31%). We recorded only 4 mange fatalities (2%) for rural foxes. Rural foxes experienced low hunting mortality (7%) and equivalent road kill and coyote predation fatalities (40% each). Sources of mortality for midwestern foxes have dramatically changed since the 1970s when hunting was the major cause of mortality. Coyote predation has effectively replaced hunting mortality, and cyclic patterns of mange outbreaks in urban fox populations might indicate a dynamic source or sink relationship to surrounding rural fox populations. Absent mange, urban areas might provide refugia for red foxes where coyote populations persist at high densities in rural areas. Managers of sympatric urban and rural wildlife populations must understand survival dynamics influencing the population at the landscape level.  相似文献   

20.
On food preference in the Red fox   总被引:2,自引:0,他引:2  
  • 1 Foxes treat different prey species in a variety of ways, eating, burying, or discarding them on the basis of preference.
  • 2 Because foxes often utilize cached food and because they can remember which prey species is in a given cache the preference effect can be longstanding.
  • 3 Evidence from the literature suggests that comparable effects of preference for different species of small mammals affects the diet of wild foxes and their behaviour in the same way as demonstrated in these experiments.
  • 4 Certain distastes appear common to all foxes and most carnivores, for instance, insectivore and carnivore meat, in particular that of their own species.
  • 5 An incidence of active cannibalism by a fox is reported.
  • 6 The effect of food preference is shown to change during the course of one individual's life perhaps as a consequence of such factors as rearing cubs and competition for food.
  • 7 One effect of the behavioural consequences of food preference is to defer the decision of what to eat.
  • 8 That the fox will kill animals that it does not eat means that populations of animals that are not strictly fox prey are still at risk from fox predatory activity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号