首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Coevolutionary interactions between avian brood parasites and their hosts often lead to the evolution of discrimination and rejection of parasite eggs or chicks by hosts based on visual cues, and the evolution of visual mimicry of host eggs or chicks by brood parasites. Hosts may also base rejection of brood parasite nestlings on vocal cues, which would in turn select for mimicry of host begging calls in brood parasite chicks. In cuckoos that exploit multiple hosts with different begging calls, call structure may be plastic, allowing nestlings to modify their calls to match those of their various hosts, or fixed, in which case we would predict either imperfect mimicry or divergence of the species into host-specific lineages. In our study of the little bronze-cuckoo (LBC) Chalcites minutillus and its primary host, the large-billed gerygone Gerygone magnirostris, we tested whether: (1) hosts use nestling vocalizations as a cue to discriminate cuckoo chicks; (2) cuckoo nestlings mimic the host begging calls throughout the nestling period; and (3) the cuckoo begging calls are plastic, thereby facilitating mimicry of the calls of different hosts. We found that the begging calls of LBCs are most similar to their gerygone hosts shortly after hatching (when rejection by hosts typically occurs) but become less similar as cuckoo chicks get older. Begging call structure may be used as a cue for rejection by hosts, and these results are consistent with gerygone defenses selecting for age-specific vocal mimicry in cuckoo chicks. We found no evidence that LBC begging calls were plastic.  相似文献   

2.
Parasitic cuckoos lay their eggs in nests of host species. Rejection of cuckoo eggs by hosts has led to the evolution of egg mimicry by cuckoos, whereby their eggs mimic the colour and pattern of their host eggs to avoid egg recognition and rejection. There is also evidence of mimicry in egg size in some cuckoo–host systems, but currently it is unknown whether cuckoos can also mimic the egg shape of their hosts. In this study, we test whether there is evidence of mimicry in egg form (shape and size) in three species of Australian cuckoos: the fan‐tailed cuckoo Cacomantis flabelliformis, which exploits dome nesting hosts, the brush cuckoo Cacomantis variolosus, which exploits both dome and cup nesting hosts, and the pallid cuckoo Cuculus pallidus, which exploits cup nesting hosts. We found evidence of size mimicry and, for the first time, evidence of egg shape mimicry in two Australian cuckoo species (pallid cuckoo and brush cuckoo). Moreover, cuckoo–host egg similarity was higher for hosts with open nests than for hosts with closed nests. This finding fits well with theory, as it has been suggested that hosts with closed nests have more difficulty recognizing parasitic eggs than open nests, have lower rejection rates and thus exert lower selection for mimicry in cuckoos. This is the first evidence of mimicry in egg shape in a cuckoo–host system, suggesting that mimicry at different levels (size, shape, colour pattern) is evolving in concert. We also confirm the existence of egg size mimicry in cuckoo–host systems.  相似文献   

3.
Certain kinds of hosts are commonly regarded as being more suitable than other for rearing European cuckoos (Cuculus canorus) – insectivores that lay small eggs and have open, shallow nests – although empirical tests of cuckoo host selection are lacking. We analysed host use by the European cuckoo in 72 British passerines that are potential hosts and for which there was information available on life-history variables and variables related to cuckoo-host coevolution, such as rate of parasitism, rejection rate of non-mimetic model eggs and degree of cuckoo-egg mimicry of host eggs. The relative population size of the host species affected parasitism rate most strongly, followed by relatively short duration of the nestling period, and the kind of nest, with cuckoos selecting open-nesting hosts. However, the effect of the nestling period could be related to host body size and the kind of nest used, because hole-nesting species normally have longer nestling periods than open-nesters. We re-analysed the data excluding hole nesters and corvid species (species with larger body mass), but the results remained identical. The European cuckoo may benefit from selecting hosts with short nestling periods because such hosts provide food for their nestlings at a very high rate. When only those species known as cuckoo hosts were analysed, the variable that best accounted for the parasitism rate was duration of the breeding season. Therefore, availability of potential hosts in both time and space is important for cuckoos in selecting hosts. Received: 16 July 1998 / Accepted: 27 October 1998  相似文献   

4.
The obligate avian brood parasitic common cuckoo Cuculus canorus comprises different strains of females that specialize on particular host species by laying eggs of a constant type that often mimics those of the host. Whether cuckoos are locally adapted for mimicking populations of the hosts on which they are specialized has never been investigated. In this study, we first explored the possibility of local adaptation in cuckoo egg mimicry over a geographical mosaic of selection exerted by one of its main European hosts, the reed warbler Acrocephalus scirpaceus. Secondly, we investigated whether cuckoos inhabiting reed warbler populations with a broad number of alternative suitable hosts at hand were less locally adapted. Cuckoo eggs showed different degrees of mimicry to different reed warbler populations. However, cuckoo eggs did not match the egg phenotypes of their local host population better than eggs of other host populations, indicating that cuckoos were not locally adapted for mimicry on reed warblers. Interestingly, cuckoos exploiting reed warblers in populations with a relatively larger number of co-occurring cuckoo gentes showed lower than average levels of local adaptation in egg volume. Our results suggest that cuckoo local adaptation might be prevented when different cuckoo populations exploit more or fewer different host species, with gene flow or frequent host switches breaking down local adaptation where many host races co-occur.  相似文献   

5.
We present a model to investigate why some bird species rearthe nestlings of brood parasites in spite of suffering largereductions in their own immediate fitness. Of particular interestis the case in which hosts rear only the parasite's young, allof their own offspring having been ejected or destroyed by theparasite. We investigate the conditions for the evolution ofretaliation by brood parasites against hosts that eject theiryoung, as well as the evolution of nonejection by hosts. Retaliationby cuckoos can evolve, despite potentially benefiting otherbrood parasites, if rates of ejection by hosts are neither toohigh nor too low, and if depredated nests are reparasitizedat a high rate by the depredating cuckoo. The presence of aretaliatory cuckoo then eases the conditions for the evolutionof hosts to accept and rear cuckoo offspring. A key conditionfavoring the evolution of non-ejection is that nonejectors enjoylower rates of parasitism in later clutches compared to ejectors.This requires that cuckoos reparasitize the clutches of ejectorsat relatively high rates and that nonejectors can rear a clutchof their own following the rearing of a cuckoo nestling. Ifthese conditions are not met, it pays hosts to eject cuckoonestlings even if the cuckoo retaliates. The model can explainwhy nonejection is relatively easy to evolve in cases in whichthe host young are reared alongside those of the cuckoo, suchas in cowbirds, and shows how hosts can resist invasion by parasiticcuckoos. The model predicts that retaliatory brood parasitessuch as the cuckoo have good memory for the location and statusof nests in their territory. Hosts of retaliatory cuckoos whosenestlings destroy the host clutch are predicted to have longbreeding seasons or the ability to attempt more than one clutchper season. Our model of retaliation may have wider applicationsto host-parasite relationships, virulence, and immunity.  相似文献   

6.
Many cuckoo species lay eggs that match those of their hosts, which can significantly reduce rejection of their eggs by the host species. However, egg mimicry is problematic for generalist cuckoos that parasitize several host species with different egg types. Some generalist cuckoos have overcome this problem by evolving several host-specific races (gentes), each with its own, host-specific egg type. It is unknown how generalist cuckoos lacking gentes are able to avoid egg rejection by hosts. Here we use reflectance spectrophotometry (300-700 nm) on museum egg collections to test for host-specific egg types in an Australian generalist cuckoo reported to have a single egg type. We show that the colour of pallid cuckoo (Cuculus pallidus) eggs differed between four host species, and that their eggs closely mimicked the eggs of the host they parasitized. These results reveal that pallid cuckoos have host-specific egg types that have not been detected by human observation, and indicate that gentes could be more common than previously realized.  相似文献   

7.
The common cuckoo Cuculus canorus is a brood parasite that utilizes many host species. These have evolved defense against parasitism to reject cuckoo eggs that look unlike their own and some cuckoos have evolved egg mimicry to counter this defense. Egg phenotype indeed plays a key role for both the cuckoo and its hosts to successfully reproduce. It has been argued that cuckoos should parasitize host nests where egg phenotype matches because this makes parasitism more successful. Details of the cuckoo’s parasitic behavior, however, largely remains unknown if they really parasitize hosts depending on “egg matching”. In this paper, we model a time sequence of parasitic events in which a cuckoo finds host nests and decides to parasitize them or not in the presence of egg polymorphism. We evaluate which strategy is optimal: (1) opportunistic parasitism where cuckoos parasitize hosts irrespective of the phenotype, or (2) non-opportunistic parasitism where cuckoos parasitize hosts where egg phenotype matches. The analysis showed that either of the two strategies can be optimal. Factors not considered in the model, e.g., ecological and evolutionary changes both in the cuckoo and the host side, are discussed to explain apparent contrasts observed in some cuckoo–host interactions.  相似文献   

8.
Why some lineages have diversified into larger numbers of species than others is a fundamental but still relatively poorly understood aspect of the evolutionary process. Coevolution has been recognized as a potentially important engine of speciation, but has rarely been tested in a comparative framework. We use a comparative approach based on a complete phylogeny of all living cuckoos to test whether parasite–host coevolution is associated with patterns of cuckoo species richness. There are no clear differences between parental and parasitic cuckoos in the number of species per genus. However, a cladogenesis test shows that brood parasitism is associated with both significantly higher speciation and extinction rates. Furthermore, subspecies diversification rate estimates were over twice as high in parasitic cuckoos as in parental cuckoos. Among parasitic cuckoos, there is marked variation in the severity of the detrimental effects on host fitness; chicks of some cuckoo species are raised alongside the young of the host and others are more virulent, with the cuckoo chick ejecting or killing the eggs/young of the host. We show that cuckoos with a more virulent parasitic strategy have more recognized subspecies. In addition, cuckoo species with more recognized subspecies have more hosts. These results hold after controlling for confounding geographical effects such as range size and isolation in archipelagos. Although the power of our analyses is limited by the fact that brood parasitism evolved independently only three times in cuckoos, our results suggest that coevolutionary arms races with hosts have contributed to higher speciation and extinction rates in parasitic cuckoos.  相似文献   

9.
The evolution of egg size in the brood parasitic cuckoos   总被引:2,自引:0,他引:2  
We compared genera of nonparasitic cuckoos and two groups ofparasitic cuckoos: those raised together with host young ("nonejectors")and those in which the newly hatched cuckoo either ejects thehost eggs or chicks, or kills the host young ("ejectors"). Nonejectorsare similar to their hosts in body size and parasitize largerhosts than do ejectors, which parasitize hosts much smallerthan themselves. In both types of parasite, the cuckoo's eggtends to match the host eggs in size. To achieve this, nonejectorshave evolved a smaller egg for their body size than have nonparasiticcuckoos, and ejectors have evolved an even smaller egg. Amongejector cuckoo genera, larger cuckoos have larger eggs relativeto the eggs of their hosts, and the relationship between cuckooegg volume (mass of the newly-hatched cuckoo) and host egg volume(mass to be ejected) did not differ from that predicted by weight-liftingallometry. However, comparing among Cuculus cuckoo species,the allometric slope differed from the predicted, so it is notclear that egg size is related to the need to give the cuckoochick sufficient strength for ejection. Comparing the two mostspeciose ejector genera, Chrysococcyx cuckoos (smaller and parasitizedome-nesting hosts) lay eggs more similar in size to their host'seggs than do Cuculus cuckoos (larger and parasitize open cup–nestinghosts). Closer size-matching of host eggs in Chrysococcyx mayreflect the following: (1) selection to reduce adult body massto facilitate entry through small domed nest holes to lay, and(2) less need for a large egg, because longer incubation periodsin dome-nesting hosts allow the young cuckoo more time to growbefore it need eject host eggs.  相似文献   

10.
Coevolutionary arms races are a potent force in evolution, and brood parasite-host dynamics provide classical examples. Different host-races of the common cuckoo, Cuculus canorus, lay eggs in the nests of other species, leaving all parental care to hosts. Cuckoo eggs often (but not always) appear to match remarkably the color and pattern of host eggs, thus reducing detection by hosts. However, most studies of egg mimicry focus on human assessments or reflectance spectra, which fail to account for avian vision. Here, we use discrimination and tetrachromatic color space modeling of bird vision to quantify egg background and spot color mimicry in the common cuckoo and 11 of its principal hosts, and we relate this to egg rejection by different hosts. Egg background color and luminance are strongly mimicked by most cuckoo host-races, and mimicry is better when hosts show strong rejection. We introduce a novel measure of color mimicry-"color overlap"-and show that cuckoo and host background colors increasingly overlap in avian color space as hosts exhibit stronger rejection. Finally, cuckoos with better background color mimicry also have better pattern mimicry. Our findings reveal new information about egg mimicry that would be impossible to derive by the human eye.  相似文献   

11.
Interspecific arms races between cuckoos and their hosts have produced remarkable examples of mimicry, with parasite eggs evolving to match host egg appearance and so evade removal by hosts. Certain bronze-cuckoo species, however, lay eggs that are cryptic rather than mimetic. These eggs are coated in a low luminance pigment that camouflages them within the dark interiors of hosts'' nests. We investigated whether cuckoo egg crypsis is likely to have arisen from the same coevolutionary processes known to favour egg mimicry. We added high and low luminance-painted eggs to the nests of large-billed gerygones (Gerygone magnirostris), a host of the little bronze-cuckoo (Chalcites minutillus). Gerygones rarely rejected either egg type, and did not reject natural cuckoo eggs. Cuckoos, by contrast, regularly removed an egg from clutches before laying their own and were five times more likely to remove a high luminance model than its low luminance counterpart. Given that we found one-third of all parasitized nests were exploited by multiple cuckoos, our results suggest that competition between cuckoos has been the key selective agent for egg crypsis. In such intraspecific arms races, crypsis may be favoured over mimicry because it can reduce the risk of egg removal to levels below chance.  相似文献   

12.
In many bird species, parents usually feed the first nestling that starts to beg before its nest‐mates. The pressure to avoid missed feeds could trigger nestlings to perform in erroneous begging in absence of parents, which has the same costs as begging in the presence of parents but without any reward. So, nestlings should try to minimize both erroneous begging and missed feeds simultaneously. The threshold to start begging is predicted to be lower for hungry nestlings and for nestlings that are unrelated to their nest‐mates, because they suffer lower inclusive fitness costs when depriving nest‐mates of food. In line with this idea, we found that brood parasitic great spotted cuckoo nestlings responded sooner than their magpie nest‐mates when an adult arrived to the nest. Under laboratory conditions, nestlings of both species rarely incurred in erroneous begging when food was abundant, but under conditions of restricted food, magpie nestlings increased erroneous begging while cuckoo nestlings did not. Highly conspicuous begging in cuckoos results in an increased predation risk, which could have resulted in stronger selection pressures on cuckoos to avoid erroneous begging, probably resulting in better developed perceptual abilities, allowing cuckoos to perform better than their host nest‐mates.  相似文献   

13.
The intestinal microbiota determines the effectiveness of digestion in vertebrates, and is influenced by the external environment (mainly the diet), gut characteristics, and phylogeny. Avian brood-parasitic nestlings of the sub-family Cuculinae develop in nests of phylogenetically distant passerines and can be fed with the host diet. If the shaping of bacterial communities is dominated by phylogenetic constraints, and therefore the microbiota of parasitic nestlings differs from that of host nestlings, the energy and micronutrients that parasites and hosts obtain from a similar amount of food would be different. In this case, the bacterial communities of parasitic and host nestlings would have important consequences with respect to brood parasite development. By experimentally creating mixed broods of magpies ( Pica pica ) and great spotted cuckoos ( Clamator glandarius ), we investigated their cloacal microbiota using ribosomal intergenic spacer analysis. We found significant differences in bacterial assemblages of the parasitic and host nestlings, although none of the phylotypes were specific in either great spotted cuckoos or magpies. Cuckoos presented more complex communities, which could help the brood parasitic life style and allow the digestion of food provided by different potential hosts. Moreover, the intestinal morphology is different between the two species due to phylogenetic differences in the two taxa, which would influence the dissimilar bacterial assemblages. The detected differences in microbiota of great spotted cuckoo and magpie nestlings, which might occur in other brood parasite–host systems, may imply a lower digestion efficiency in parasites. Thus, the higher level requirements of cuckoo nestlings may be explained, at least in part, by cuckoos having a suboptimal bacterial community for processing the host diet.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 406–414.  相似文献   

14.
We compared nestling begging calls of four hosts (reed warbler, Acrocephalus scirpaceus; great reed warbler, A. arundinaceus; dunnock, Prunella modularis; and meadow pipit, Anthus pratensis) and the respective host-races of the common cuckoo. Note structure varied between host species, but not between cuckoo host-races, so cuckoos did not vary their call note structure to match that of their hosts' chicks. Call rate increased with age, but there were marked differences between both host species and cuckoo host-races. Dunnock-cuckoos called more rapidly than reed warbler-cuckoos despite growing at the same rate. We suggest this difference reflects how cuckoos tune into the way these host species respond to begging signals from their own young, because dunnock chicks called much more rapidly than reed warbler chicks. Great reed warbler-cuckoos called at a lower rate than reed warbler-cuckoos when young, but at a greater rate when older than 8 days. This could also result from the cuckoo chicks tuning into differences in the way these hosts respond to begging signals. However, great reed warbler-cuckoos grew at a faster rate than the other cuckoo host-races, so they may also call faster to demand higher provisioning rates from this larger host. To test these hypotheses critically, data are needed on how the different host species integrate visual and vocal begging signals from their own broods. We discuss how differences in cuckoo begging might develop, given that cuckoo host-races are restricted to female cuckoo lineages. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

15.
Egg mimicry is an important adaptation of common cuckoos, Cuculus canorus, against rejection of eggs by their respective hosts. A precondition for the maintenance of egg mimicry is that female cuckoos find hosts with a matching egg type. Experimental evidence indicated that habitat imprinting may be important for host selection. We tested whether the spacing and laying patterns of female cuckoos in the field are compatible with the supposed habitat-imprinting mechanism. We observed 16 females, with the help of radiotelemetry; of seven females, we observed directly 26 egg layings and 27 nest visits without laying. As expected if females were imprinted on different vegetation types, (1) the distribution of vegetation types differed between female home ranges, (2) female habitat use differed from average habitat availability within the egg-laying area (habitat preference), (3) females visited nests and deposited their eggs in the habitat they preferred, and (4) females laid their eggs consistently in a particular habitat type, irrespective of the host species. These results indicate that cuckoo females show habitat preference when searching for suitable host nests. Hence our data are compatible with the habitat-imprinting hypothesis, but owing to the habitat specificity of hosts the data cannot disprove a potential role of host specificity in cuckoo females.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

16.
Coevolution between parasites and their hosts typically leads to increasing specialization on host species by the parasite. Where multiple hosts are parasitized, specialization on each host can result in genetic divergence within the parasite population to create host races, and, ultimately, new species. We investigate how host-specific traits arise in Horsfield's bronze-cuckoo Chalcites basalis nestlings. Newly hatched cuckoos evict host young from the nest, yet in the absence of a model they accurately mimic the different begging calls of a primary host (superb fairy-wren, Malurus cyaneus) and a secondary host (buff-rumped thornbill, Acanthiza reguloides). Using cross-fostering experiments, we show that begging calls are modified after parasitism, through experience. Further, we demonstrate the mechanism by which mimetic calls are acquired. All cuckoo nestlings initially produced the call of their primary host. When cross-fostered as eggs to a secondary host, calls increased in variability and were rapidly modified to resemble those of the secondary host through shaping by host parents. We suggest that plasticity in the development of host-specific traits after parasitism is likely to reduce selection for host race formation.  相似文献   

17.
Chicks of the brood parasitic common cuckoo (Cuculus canorus) typically monopolize host parental care by evicting all eggs and nestmates from the nest. To assess the benefits of parasitic eviction behaviour throughout the full nestling period, we generated mixed broods of one cuckoo and one great reed warbler (Acrocephalus arundinaceus) to study how hosts divide care between own and parasitic young. We also recorded parental provisioning behaviour at nests of singleton host nestlings or singleton cuckoo chicks. Host parents fed the three types of broods with similar-sized food items. The mass of the cuckoo chicks was significantly reduced in mixed broods relative to singleton cuckoos. Yet, after the host chick fledged from mixed broods, at about 10-12 days, cuckoo chicks in mixed broods grew faster and appeared to have compensated for the growth costs of prior cohabitation by fledging at similar weights and ages compared to singleton cuckoo chicks. These results are contrary to suggestions that chick competition in mixed broods of cuckoos and hosts causes an irrecoverable cost for the developing brood parasite. Flexibility in cuckoos' growth dynamics may provide a general benefit to ecological uncertainty regarding the realized successes, failures, and costs of nestmate eviction strategies of brood parasites.  相似文献   

18.
Avian brood parasites lay their eggs in other birds' nests and impose considerable fitness costs on their hosts. Historically and scientifically, the best studied example of circumventing host defences is the mimicry of host eggshell colour by the common cuckoo (Cuculus canorus). Yet the chemical basis of eggshell colour similarity, which impacts hosts' tolerance towards parasitic eggs, remains unknown. We tested the alternative scenarios that (i) cuckoos replicate host egg pigment chemistry, or (ii) cuckoos use alternative mechanisms to produce a similar perceptual effect to mimic host egg appearance. In parallel with patterns of similarity in avian-perceived colour mimicry, the concentrations of the two key eggshell pigments, biliverdin and protoporphyrin, were most similar between the cuckoo host-races and their respective hosts. Thus, the chemical basis of avian host-parasite egg colour mimicry is evolutionarily conserved, but also intraspecifically flexible. These analyses of pigment composition reveal a novel proximate dimension of coevolutionary interactions between avian brood parasites and hosts, and imply that alternative phenotypes may arise by the modifications of already existing biochemical and physiological mechanisms and pathways.  相似文献   

19.
《Animal behaviour》1988,36(1):262-284
At study sites in Cambridgeshire, England, the percentage of reed warbler, Acrocephalus scirpaceus, nests parasitized by cuckoos, Cuculus canorus, in 2 years was 22·5% and 9·1%. The warblers rejected cuckoo eggs at 19% of parasitized nests. Parasitized clutches suffered less predation than unparasitized clutches, suggesting that the cuckoo itself was the major predator, plundering nests too advanced for parasitism so that the hosts would re-lay. The cuckoos laid a mimetic egg, parasitized nests in the afternoons during the host laying period, usually removed one host egg, laid a remarkably small egg and laid very quickly. Nests were experimentally parasitized with model eggs to study the significance of this procedure. Experiments showed that host discrimination selects for: (1) egg mimicry by cuckoos (poorer matching model eggs were more likely to be rejected); (2) parasitism during the laying period (mimetic eggs put in nests before host laying began were rejected); (3) afternoon laying (mimetic eggs were less likely to be accepted in the early morning than in the afternoon, when hosts were more often absent from the nest); (4) a small egg (large eggs, typical of non-parasitic cuckoos, were more likely to be rejected); (5) rapid laying (a stuffed cuckoo on the nest stimulated increased rejection of model eggs), and (6) sets a limit to host egg removal by cuckoos (if more than one or two are removed desertion may occur). Mimicry may also be selected for because it reduced the chance that second cuckoos can discriminate the first cuckoo's egg from the host's clutch. Predation did not select for mimicry; nests with a non-mimetic egg did not suffer greater predation than those with a mimetic egg. Host rejection of model eggs did not depend on: (1) stage of parasitism once host egg laying had begun (nevertheless cuckoos were more likely to lay early in the host laying period probably to increase the chance the cuckoo chick hatched); (2) removal of a host egg (however, this reduced the incidence of unhatched eggs so cuckoos may remove a host egg so as not to exceed the host incubation limit). There were two costs of rejection, an ‘ejection’ cost (own eggs ejected as well as the cuckoo egg) and, with mimetic eggs, a ‘recognition’ cost (own eggs ejected instead of the cuckoo egg). Reed warblers did not discriminate against unlike chicks (another species) and did not favour either a cuckoo chick or their own chicks when these were placed in two nests side by side. Possible reasons why the hosts discriminate against unlike eggs but not unlike chicks are discussed.  相似文献   

20.
The brood parasitic habits of the European Cuckoo Cuculus canorus have excited wonder, disbelief and speculation since the fourth century BC. Accurate knowledge of cuckoo biology, however, accumulated only slowly and mostly since 1700. The aim of this study is to review six main topics: (1) the placement of cuckoo eggs in host nests; (2) cuckoo ‘clutch’ size; (3) cuckoo egg characteristics, mimicry and rejection; (4) choice of hosts; (5) eviction of eggs and chicks; and (6) the reasons why cuckoos are brood parasites and are incapable of rearing their own young. Early errors in reporting cuckoo biology were often a consequence of poor or incomplete observations leading to erroneous interpretations. Many of the early observers were egg collectors who focussed almost exclusively on the egg-laying period, thus ignoring cuckoo chick biology. Major landmarks in cuckoo studies included the facts that: (1) cuckoo eggs often resembled those of their hosts (1760s) and that this mimicry was adaptive (1850s); (2) hosts sometimes evicted cuckoo eggs (1770s); (3) female cuckoos laid individually distinctive eggs and that specific cuckoo gentes may exist (1850s); and (4) although well recognised that cuckoo chicks were reared alone, prior to Jenner’s work in the 1780s female cuckoo parents were thought to either eat or evict the host eggs or young. Jenner’s results was more readily accepted in Britain than in Germany. Between 1700 and 1859, cuckoo brood parasitism was difficult to reconcile with the prevalent conceptual framework of physico-theology (later known as the argument from design). Thereafter, Darwin’s idea of natural selection provided a superior conceptual framework, which in conjunction with experimental testing of specific hypotheses has continued to advance our understanding of brood parasitism. Our knowledge of cuckoo biology is far from complete, however, and we predict that continuing research often incorporating new technologies will refine and extend our understanding of the cuckoo’s extraordinary biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号