首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have previously shown that cancer cells can protect themselves from apoptosis induced by type I interferons (IFNs) through a ras→MAPK-mediated pathway. In addition, since IFN-mediated signalling components STATs are controlled by PPAR gamma we studied the pharmacological interaction between recombinant IFN-β and the PPAR-γ agonist troglitazone (TGZ). This combination induced a synergistic effect on the growth inhibition of BxPC-3, a pancreatic cancer cell line, through the counteraction of the IFN-β-induced activation of STAT-3, MAPK and AKT and the increase in the binding of both STAT-1 related complexes and PPAR-γ with specific DNA responsive elements. The synergism on cell growth inhibition correlated with a cell cycle arrest in G0/G1 phase, secondary to a long-lasting increase of both p21 and p27 expressions. Blockade of MAPK activation and the effect on p21 and p27 expressions, induced by IFN-β and TGZ combination, were due to the decreased activation of STAT-3 secondary to TGZ. IFN-β alone also increased p21 and p27 expression through STAT-1 phosphorylation and this effect was attenuated by the concomitant activation of IFNbeta-induced STAT-3-activation. The combination induced also an increase in autophagy and a decrease in anti-autophagic bcl-2/beclin-1 complex formation. This effect was mediated by the inactivation of the AKT→mTOR-dependent pathway. To the best of our knowledge this is the first evidence that PPAR-γ activation can counteract STAT-3-dependent escape pathways to IFN-β-induced growth inhibition through cell cycle perturbation and increased autophagic death in pancreatic cancer cells.  相似文献   

4.
In this report, we analyzed the expression and kinase activities of Csk and CHK kinases in normal breast tissues and breast tumors and their involvement in HRG-mediated signaling in breast cancer cells. Csk expression and kinase activity were abundant in normal human breast tissues, breast carcinomas, and breast cancer cell lines, whereas CHK expression was negative in normal breast tissues and low in some breast tumors and in the MCF-7 breast cancer cell line. CHK kinase activity was not detected in human breast carcinoma tissues (12 of 12) or in the MCF-7 breast cancer cell line (due to the low level of CHK protein expression), but was significantly induced upon heregulin (HRG) stimulation. We have previously shown that CHK associates with the ErbB-2/neu receptor upon HRG stimulation via its SH2 domain and that it down-regulates the ErbB-2/neu-activated Src kinases. Our new findings demonstrate that Csk has no effect on ErbB-2/neu-activated Src kinases upon HRG treatment and that its kinase activity is not modulated by HRG. CHK significantly inhibited in vitro cell growth, transformation, and invasion induced upon HRG stimulation. In addition, tumor growth of wt CHK-transfected MCF-7 cells was significantly inhibited in nude mice. Furthermore, CHK down-regulated c-Src and Lyn protein expression and kinase activity, and the entry into mitosis was delayed in the wt CHK-transfected MCF-7 cells upon HRG treatment. These results indicate that CHK, but not Csk, is involved in HRG-mediated signaling pathways, down-regulates ErbB-2/neu-activated Src kinases, and inhibits invasion and transformation of breast cancer cells upon HRG stimulation. These findings strongly suggest that CHK is a novel negative growth regulator of HRG-mediated ErbB-2/neu and Src family kinase signaling pathways in breast cancer cells.  相似文献   

5.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell proliferation and induce apoptosis in cancer cells. Here we wished to determine whether the PPARgamma ligand induces apoptosis and cell cycle arrest of the MDA-MB-231 cell, an estrogen receptor alpha negative breast cancer cell line. The treatment of MDA-MB-231 cell with PPARgamma ligands was shown to induce inhibition of cell growth in a dose-dependent manner as determined by MTT assay. Cell cycle analysis showed a G1 arrest in MDA-MB-231 cells exposed to troglitazone. An apoptotic effect by troglitazone demonstrated that apoptotic cells elevated by 2.5-fold from the control level at 10 microM, to 3.1-fold at 50 microM and to 3.5-fold at 75 microM. Moreover, troglitazone treatment, applied in a dose-dependent manner, caused a marked decrease in pRb, cyclin D1, cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 expression as well as a significant increase in p21 and p27 expression. These results indicate that troglitazone causes growth inhibition, G1 arrest and apoptotic death of MDA-MB-231 cells.  相似文献   

6.
The role of the peroxisome proliferator-activated receptor-gamma (PPARgamma) in cell differentiation, cell-cycle arrest, and apoptosis has attracted increasing attention. We have recently demonstrated that PPARgamma ligands-troglitazone (TGZ) induced apoptosis in lung cancer cells. In this report, we further studied the role of ERK1/2 in lung cancer cells treated by TGZ. The result demonstrated that TGZ induced PPARgamma and ERK1/2 accumulation in the nucleus, in which the co-localization of both proteins was found. The activation of ERK1/2 resulted in apoptosis via a mitochondrial pathway. Both PPARgamma siRNA and U0126, a specific inhibitor of ERK1/2, were able to block these effects of TGZ, suggesting that apoptosis induced by TGZ was PPARgamma and ERK1/2 dependent. Inhibition of ERK1/2 by U0126 also led to a significant decrease in the level of PPARgamma, indicating a positive cross-talk between PPARgamma and ERK1/2 or an auto-regulatory feedback mechanism to amplify the effect of ERK1/2 on cell growth arrest and apoptosis. In addition to ERK1/2, TGZ also activated Akt. Interestingly, inhibition of ERK1/2 prevented the activation of Akt whereas the suppression of Akt had no effect on ERK1/2, suggesting that Akt was not necessary for TGZ-PPARgamma-ERK pathway. However, the inhibition of Akt promoted the release of cytochrome c, suggesting the activation of Akt may have a negative effect on apoptosis induced by TGZ. In conclusion, our study has demonstrated that TGZ, a synthetic PPARgamma ligand, induced apoptosis in NCI-H23 lung cancer cells via a mitochondrial pathway and this pathway was PPARgamma and ERK1/2 dependent.  相似文献   

7.
The ability of the epidermal growth factor receptor (EGFR) family members, EGFR, HER2, HER3, and HER4, to form homo- and heterodimers after interaction with different ligands expands the signal diversity of these proteins. We investigated their mechanism of activation by exogenous EGF and heregulin (HRG) in human ovarian carcinoma cell lines which express different amounts and combinations of the four receptors. Consistently the predominant interaction after EGF treatment was between EGFR and HER2, whereas activation of HER3 and HER4 depended on the relative abundance of the four receptors in the cells. Remarkably HER3 activation by HRG could occurs independent of HER2, and in one cell line almost no HER4 activation by HRG was detected despite high levels expression. Both EGF and HRG induced activation of mitogen-activated protein kinase (MAPK), but the time course of MAPK activation differed depending on the hetero-dimers induced. EGF and HRG mediated cell growth through the EGFR/HER2 heterodimer and HER4, respectively, but not through HER3 when it was the only HRG receptor expressed and phosphorylated in the cells. These findings reveal a distinct pattern of HRG induced EGFR family interaction in ovarian cancer that is distinct from that described in human breast cancer. Moreover EGF and HRG can exert distinct biological functions depending on the receptor complexes induced in a given ovarian cancer cell line.  相似文献   

8.
9.
Pathological neuronal inclusions of the 43-kDa TAR DNA-binding protein (TDP-43) are implicated in dementia and motor neuron disorders; however, the molecular mechanisms of the underlying cell loss remain poorly understood. Here we used a yeast model to elucidate cell death mechanisms upon expression of human TDP-43. TDP-43-expressing cells displayed markedly increased markers of oxidative stress, apoptosis, and necrosis. Cytotoxicity was dose- and age-dependent and was potentiated upon expression of disease-associated variants. TDP-43 was localized in perimitochondrial aggregate-like foci, which correlated with cytotoxicity. Although the deleterious effects of TDP-43 were significantly decreased in cells lacking functional mitochondria, cell death depended neither on the mitochondrial cell death proteins apoptosis-inducing factor, endonuclease G, and cytochrome c nor on the activity of cell death proteases like the yeast caspase 1. In contrast, impairment of the respiratory chain attenuated the lethality upon TDP-43 expression with a stringent correlation between cytotoxicity and the degree of respiratory capacity or mitochondrial DNA stability. Consistently, an increase in the respiratory capacity of yeast resulted in enhanced TDP-43-triggered cytotoxicity, oxidative stress, and cell death markers. These data demonstrate that mitochondria and oxidative stress are important to TDP-43-triggered cell death in yeast and may suggest a similar role in human TDP-43 pathologies.  相似文献   

10.
alpha(v)beta(3) integrin has a dual role in apoptosis. Whereas ligated alpha(v)beta(3) activates cell survival pathways and suppresses pro-apoptotic signals, unligated alpha(v)beta(3) or integrins bound to soluble ligands promote apoptosis. In this study, we assessed the role of alpha(v)beta(3) in chemosensitivity of breast cancer cells expressing different levels of heregulin (HRG). Expression levels of the RGD-binding integrins alpha(v)beta(3) were measured in MDA-MB-231 human breast cancer cells and its low HRG-expressing derivative (MDA-MB-231/AS31) treated with the microtubule-interfering agents (MIAs) paclitaxel and vincristine. Following treatment, only alpha(v)beta(3) levels were significantly increased in MDA-MB-231 cells. Interestingly, alpha(v)beta(3) expression was more significantly up-regulated in the MDA-MB-231/AS31 cells than in the parental cells. This MIA-induced increase of alpha(v)beta(3) expression was correlated with a decrease in cell viability and an increase in apoptosis in MDA-MB-231/AS31 cells, indicating that overexpression of alpha(v)beta(3) is linked to chemotherapy-induced cell death in low HRG-expressing breast cancer models. Moreover, a paclitaxel-induced increase of alpha(v)beta(3) was also observed in MCF-7 cells but not in an doxorubicin-resistant derivative that shows cross-resistance to paclitaxel, further providing evidence that the extent of alpha(v)beta(3) up-regulation is related to cell damage. These results indicate that alpha(v)beta(3) integrin is dramatically up-regulated in low HRG-expressing breast cancer models that are highly responsive to MIAs, thus providing a novel molecular marker of chemosensitivity influenced by HRG levels in breast cancer cells.  相似文献   

11.
Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas.  相似文献   

12.
13.
Accumulating evidence indicates that heregulins, EGF (epidermal growth factor)-like ligands, promote breast cancer cell proliferation and are involved in the progression of breast cancer towards an aggressive and invasive phenotype. However, there is limited information regarding the molecular mechanisms that mediate these effects. We have recently established that HRG (heregulin beta1) promotes breast cancer cell proliferation and migration via cross-talk with EGFR (EGF receptor) that involves the activation of the small GTPase Rac1. In the present paper we report that Rac1 is an essential player for mediating the induction of cyclin D1 and p21(Cip1) by HRG in breast cancer cells. Inhibition of Rac function by expressing either the Rac-GAP (GTPase-activating protein) beta2-chimaerin or the dominant-negative Rac mutant N17Rac1, or Rac1 depletion using RNAi (RNA interference), abolished the cyclin D1 and p21(Cip1) induction by HRG. Interestingly, the proliferative effect of HRG was impaired not only when the expression of Rac1 or cyclin D1 was inhibited, but also when cells were depleted of p21(Cip1) using RNAi. Inhibition of EGFR, PI3K (phosphoinositide 3-kinase; kinases required for Rac activation by HRG) or MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] also blocked the up-regulation of cyclin D1 and p21(Cip1) by HRG. In addition, we found that HRG activates NF-kappaB (nuclear factor kappaB) in a Rac1- and MEK-dependent fashion, and inhibition of NF-kappaB abrogates cyclin D1/p21(Cip1) induction and proliferation by HRG. Taken together, these findings establish a central role for Rac1 in the control of HRG-induced breast cancer cell-cycle progression and proliferation through up-regulating the expression of cyclin D1 and p21(Cip1).  相似文献   

14.
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPARγ protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPARγ ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPARγ ligands may have applications for the treatment of ovarian cancer.  相似文献   

15.
To elucidate the molecular mechanisms by which human epidermal growth factor receptor/heregulin (HER2/HRG) influence the migratory potential of breast cancer cells, we have used phospho-specific antibodies against c-Src kinase and focal adhesion kinase (FAK). This study establishes that HER2/HRG signaling selectively upregulates Tyr phosphorylation of c-Src at Tyr-215 located within the SH2 domain, increases c-Src kinase activity and selectively upregulates Tyr phosphorylation of FAK at Tyr-861. HER2-overexpressing tumors showed increased levels of c-Src phosphorylation at Tyr-215. These findings suggest that HER2/HRG influence metastasis of breast cancer cells through a novel signaling pathway involving phosphorylation of FAK tyrosine 861 via activation of c-Src tyrosine 215.  相似文献   

16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapy that preferentially induces apoptosis in cancer cells. However, many neoplasms are resistant to TRAIL by mechanisms that are poorly understood. Here we demonstrate that human breast cancer cells, but not normal mammary epithelial cells, are dramatically sensitized to TRAIL-induced apoptosis and caspase activation by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists of the thiazolidinedione (TZD) class. Although TZDs do not significantly alter the expression of components of the TRAIL signaling pathway, they profoundly reduce protein levels of cyclin D3, but not other D-type cyclins, by decreasing cyclin D3 mRNA levels and by inducing its proteasomal degradation. Importantly, both TRAIL sensitization and reduction in cyclin D3 protein levels induced by TZDs are likely PPARgamma-independent because a dominant negative mutant of PPARgamma did not antagonize these effects of TZDs, nor were they affected by the expression levels of PPARgamma. TZDs also inhibit G(1) to S cell cycle progression. Furthermore, silencing cyclin D3 by RNA interference inhibits S phase entry and sensitizes breast cancer cells to TRAIL, indicating a key role for cyclin D3 repression in these events. G(1) cell cycle arrest sensitizes breast cancer cells to TRAIL at least in part by reducing levels of the anti-apoptotic protein survivin: ectopic expression of survivin partially suppresses apoptosis induced by TRAIL and TZDs. We also demonstrate for the first time that TZDs promote TRAIL-induced apoptosis of breast cancer in vivo, suggesting that this combination may be an effective therapy for cancer.  相似文献   

17.
《Cellular signalling》2014,26(1):70-82
Human MAP3K4 (MTK1) functions upstream of mitogen activated protein kinases (MAPKs). In this study we show MTK1 is required for human epidermal growth factor receptor 2/3 (HER2/HER3)-heregulin beta1 (HRG) induced cell migration in MCF-7 breast cancer cells. We demonstrate that HRG stimulation leads to association of MTK1 with activated HER3 in MCF-7 and T-47D breast cancer cells. Activated HER3 association with MTK1 is dependent on HER2 activation and is decreased by pre-treatment with the HER2 inhibitor, lapatinib. Moreover, we also identify the actin interacting region (AIR) on MTK1. Disruption of actin cytoskeletal polymerization with cytochalasin D inhibited HRG induced MTK1/HER3 association. Additionally, HRG stimulation leads to extracellular acidification that is independent of cellular proliferation. HRG induced extracellular acidification is significantly inhibited when MTK1 is knocked down in MCF-7 cells. Similarly, pre-treatment with lapatinib significantly decreased HRG induced extracellular acidification. Extracellular acidification is linked with cancer cell migration. We performed scratch assays that show HRG induced cell migration in MCF-7 cells. Knockdown of MTK1 significantly inhibited HRG induced cell migration. Furthermore, pre-treatment with lapatinib also significantly decreased cell migration. Cell migration is required for cancer cell metastasis, which is the major cause of cancer patient mortality. We identify MTK1 in the HER2/HER3-HRG mediated extracellular acidification and cell migration pathway in breast cancer cells.  相似文献   

18.
The DF3/MUC1 transmembrane oncoprotein is aberrantly overexpressed in most human breast carcinomas and interacts with the Wnt effector gamma-catenin. Here, we demonstrate that MUC1 associates constitutively with ErbB2 in human breast cancer cells and that treatment with heregulin/neuregulin-1 (HRG) increases the formation of MUC1-ErbB2 complexes. The importance of the MUC1-ErbB2 interaction is supported by the demonstration that HRG induces binding of MUC1 and gamma-catenin and targeting of the MUC1-gamma-catenin complex to the nucleolus. Significantly, nucleolar localization of gamma-catenin in response to HRG is dependent on MUC1 expression. Moreover, mutation of a RRK motif in the MUC1 cytoplasmic domain abrogates HRG-induced nucleolar localization of MUC1 and gamma-catenin. In concert with these results, we show nucleolar localization of MUC1 and gamma-catenin in human breast carcinomas but not in normal mammary ductal epithelium. These findings demonstrate that MUC1 functions in cross talk between ErbB2 and Wnt pathways by acting as a shuttle for HRG-induced nucleolar targeting of gamma-catenin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号