首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immobilization strategy of cell‐specific aptamers is of great importance for studying the interaction between a cell and its aptamer. However, because of the difficulty of studying living cell, there have not been any systematic reports about the effect of immobilization strategies on the binding ability of an immobilized aptamer to its target cell. Because atomic force spectroscopy (AFM) could not only be suitable for the investigation of living cell under physiological conditions but also obtains information reflecting the intrinsic properties of individuals, the effect of immobilization strategies on the interaction of aptamer/human hepatocarcinoma cell Bel‐7404 was successively evaluated using AFM here. Two different immobilization methods, including polyethylene glycol immobilization method and glutaraldehyde immobilization method were used, and the factors, such as aptamer orientation, oligodeoxythymidine spacers and dodecyl spacers, were investigated. Binding events measured by AFM showed that a similar unbinding force was obtained regardless of the change of the aptamer orientation, the immobilization method, and spacers, implying that the biophysical characteristics of the aptamer at the molecular level remain undisturbed. However, it showed that the immobilization orientation, immobilization method, and spacers could alter the binding probability of aptamer/Bel‐7404 cell. Presumably, these factors may affect the accessibility of the aptamer toward its target cell. These results may provide valuable information for aptamer sensor platforms including ultrasensitive biosensor design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Atomic force microscopy (AFM) can detect the adhesion or affinity force between a sample surface and cantilever, dynamically. This feature is useful as a method for the selection of aptamers that bind to their targets with very high affinity. Therefore, we propose the Systematic Evolution of Ligands by an EXponential enrichment (SELEX) method using AFM to obtain aptamers that have a strong affinity for target molecules. In this study, thrombin was chosen as the target molecule, and an ‘AFM-SELEX’ cycle was performed. As a result, selected cycles were completed with only three rounds, and many of the obtained aptamers had a higher affinity to thrombin than the conventional thrombin aptamer. Moreover, one type of obtained aptamer had a high affinity to thrombin as well as the anti-thrombin antibody. AFM-SELEX is, therefore, considered to be an available method for the selection of DNA aptamers that have a high affinity for their target molecules.  相似文献   

4.
The identification of tumor related cell membrane protein targets is important in understanding tumor progression, the development of new diagnostic tools, and potentially for identifying new therapeutic targets. Here we present a novel strategy for identifying proteins that are altered in their expression levels in a diseased cell using cell specific aptamers. Using an intact viable B-cell Burkitt's lymphoma cell line (Ramos cells) as the target, we have selected aptamers that recognize cell membrane proteins with high affinity. Among the selected aptamers that showed different recognition patterns with different cell lines of leukemia, the aptamer TD05 showed binding with Ramos cells. By chemically modifying TD05 to covalently cross-link with its target on Ramos cells to capture and to enrich the target receptors using streptavidin coated magnetic beads followed by mass spectrometry, we were able to identify membrane bound immunoglobin heavy mu chain as the target for TD05 aptamer. Immunoglobin heavy mu chain is a major component of the B-cell antigen receptor, which is expressed in Burkitt's lymphoma cells. This study demonstrates that this two step strategy, the development of high quality aptamer probes and then the identification of their target proteins, can be used to discover new disease related potential markers and thus enhance tumor diagnosis and therapy. The aptamer based strategy will enable effective molecular elucidation of disease related biomarkers and other interesting molecules.  相似文献   

5.
RNA affinity tags would be very useful for the study of RNAs and ribonucleoproteins (RNPs) as a means for rapid detection, immobilization, and purification. To develop a new affinity tag, streptavidin-binding RNA ligands, termed "aptamers," were identified from a random RNA library using in vitro selection. Individual aptamers were classified into two groups based on common sequences, and representative members of the groups had sufficiently low dissociation constants to suggest they would be useful affinity tools. Binding of the aptamers to streptavidin was blocked by presaturation of the streptavidin with biotin, and biotin could be used to dissociate RNA/streptavidin complexes. To investigate the practicality of using the aptamer as an affinity tag, one of the higher affinity aptamers was inserted into RPR1 RNA, the large RNA subunit of RNase P. The aptamer-tagged RNase P could be specifically isolated using commercially available streptavidin-agarose and recovered in a catalytically active form when biotin was used as an eluting agent under mild conditions. The aptamer tag was also used to demonstrate that RNase P exists in a monomeric form, and is not tightly associated with RNase MRP, a closely related ribonucleoprotein enzyme. These results show that the streptavidin aptamers are potentially powerful tools for the study of RNAs or RNPs.  相似文献   

6.
The hepatitis C virus (HCV) non-structural protein 3 (NS3) is a multifunctional enzyme with protease and helicase activities. It is essential for HCV proliferation and is therefore a target for anti-HCV drugs. Previously, we obtained RNA aptamers that inhibit either the protease or helicase activity of NS3. During the present study, these aptamers were used to create advanced dual-functional (ADD) aptamers that were potentially more effective inhibitors of NS3 activity. The structural domain of the helicase aptamer, #5Delta, was conjugated via an oligo(U) tract to the 3'-end of the dual functional aptamer NEO-III-14U or the protease aptamer G9-II. The spacer length was optimized to obtain two ADD aptamers, NEO-35-s41 and G925-s50; both were more effective inhibitors of NS3 protease/helicase activity in vitro, especially the helicase, with a four- to five-fold increase in inhibition compared with #5 and NEO-III-14U. Furthermore, G925-s50 effectively inhibited NS3 protease activity in living cells and HCV replication in vitro. Overall, we have demonstrated rational RNA aptamer design based on features of both aptamer and target molecules, as well as successfully combining aptamer function and increasing NS3 inhibition.  相似文献   

7.
The entrance of influenza virus into host cells is facilitated by the attachment of the globular region of viral hemagglutinin to the sialic acid receptors on host cell surfaces. In this study, we have cloned the cDNA fragment encoding the entire globular region (residues 101–257) of hemagglutinin of the H9N2 type avian influenza virus (A/ck/Korea/ms96/96). The protein segment (denoted as the H9 peptide), which was expressed and purified in E. coli, was used for the immunization of BALB/c mice to obtain the anti-H9 antiserum. To identify specific DNA aptamers with high affinity to H9 peptide, we conducted the SELEX method; 19 aptamers were newly isolated. A random mixture of these aptamers showed an increased level of binding affinity to the H9 peptide. The sequence alignment analysis of these aptamers revealed that 6 aptamers have highly conserved consensus sequences. Among these, aptamer C7 showed the highest similarity to the consensus sequences. Therefore, based on the C7 aptamer, we synthesized a new modified aptamer designated as C7-35M. This new aptamer showed strong binding capability to the viral particles. Furthermore, it could prevent MDCK cells from viral infection by strong binding to the viral particles. These results suggest that our aptamers can recognize the hemagglutinin protein of avian influenza virus and inhibit the binding of the virus to target receptors required for the penetration of host cells.  相似文献   

8.
Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.  相似文献   

9.
10.
Aptamers are synthetic, short nucleic acid molecules capable of specific target recognition. Aptamers are selected using a screening method termed Systematic Evolution of Ligands by Exponential enrichment (SELEX). We recently have introduced a variant of SELEX called “Ligand-Guided-Selection” (LIGS) that allows the identification of specific aptamers against known cell-surface proteins. Utilizing LIGS, we introduced three specific aptamers against membrane-bound IgM (mIgM), which is the hallmark of B cells. Out of the three aptamers selected against mIgM, an aptamer termed R1, in particular, was found to be interesting due to its ability to recognize mIgM on target cells and then block anti-IgM antibodies binding their antigen. We systematically truncated parent aptamer R1 to design shorter variants with enhanced affinity. Importantly, herein we show that the specificity of the most optimized variant of R1 aptamer is similar to that of anti-IgM antibody, indicating that the specificity of the ligand utilized in selective elution of the aptamer determines the specificity of the LIGS-generated aptamer. Furthermore, we report that truncated variants of R1 are able to recognize mIgM-positive human B lymphoma BJAB cells at physiological temperature, demonstrating that LIGS-generated aptamers could be re-optimized into higher affinity variants. Collectively, these findings show the significance of LIGS in generating highly specific aptamers with potential applications in biomedicine.  相似文献   

11.
Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (Kd) <10 pM, representing a ∼200-fold improvement in binding affinity over the monomeric aptamers and a ∼15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.  相似文献   

12.
Because cell‐specific aptamers have high potential for biomedical applications, investigation of the interaction between cell and its aptamers may be of key importance for an improved understanding of biochemical processes. Herein, the interaction between human lung adenocarcinoma A549 cell and its four aptamers was explored using single‐molecule force spectroscopy (SMFS). The values of the unbinding force varied from 117.1 to 171.0 pN at the loading rate of 1.8 × 105 pN/s. Based on the dependence of singe molecule force on the atomic force microscopy loading rate, the corresponding kinetic parameters were obtained. The results revealed two activation barriers and two transient states in the unbinding process of aptamer/cell interaction. More importantly, the binding sites on A549 cells with its four aptamers were defined to be different using SMFS and flow cytometry. This work demonstrated that SMFS can be used as a powerful tool for exploring the aptamer/cell binding behavior at the single‐molecule level, and may provide valuable information for the design and application of aptamer probes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
To enhance the feasibility of surface plasmon resonance (SPR) immunosensor as a tool for diagnosing type I diabetes, we enhanced the sensitivity of immunoresponse for detecting the monoclonal anti-glutamic acid decarboxylase (GAD) antibody by modification of mixed self-assembled monolayers (SAMs). The effects of the different mixed SAMs were evaluated with respect to the degree of streptavidin immobilization, the degree of biotin-GAD immobilization, and the immunoresponse sensitivity. Consequently, the sensitivity of the immunoresponse for the detection of anti-GAD antibody was enhanced as a result of the reduction in steric hindrance brought about by using SAMs of heterogeneous lengths. The immunoresponse for detecting the monoclonal anti-GAD antibody was also enhanced with the reduction of the excess immobilization of biotin-GAD and the minimization of non-specific binding that resulted from the simple substitution of the spacer from a carboxylic-terminated SAM for the hydroxyl-terminated SAM.  相似文献   

14.
信号适体兼具有分子识别和信号转导的功能.从随机寡核苷酸库中筛选出的适体,要经过合理设计和筛选后修饰,才具备信号转导功能.信号适体可分为标记和非标记两大类.本文着重介绍荧光标记信号适体的设计策略,包括基于荧光偏振分析标记一个荧光基团,及基于荧光共振能量转移同时标记荧光基团、淬灭基团,或两个荧光基团的信号适体(包括分子信标适体、结构转换和原位标记信号适体).非标记信号适体的设计,有嵌合法、置换法、光转换复合物法,及适体-多聚物偶联法.此外,亦可直接从体外筛选出信号适体.信号适体的诸多优点利于其用于生物传感器及均相液相中实时蛋白识别与定量分析.  相似文献   

15.
Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets (“apatopes”) with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer–aptamer, aptamer–nonaptamer biomacromolecules (siRNAs, proteins) and aptamer–nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities.  相似文献   

16.
An electrochemical detection method for chemical sensing has been developed using a DNA aptamer immobilized gold electrode chip. DNA aptamers specifically binding to 17beta-estradiol were selected by the SELEX (Systematic Evolution of Ligands by EXponential enrichment) process from a random ssDNA library, composed of approximately 7.2 x 10(14) DNA molecules. Gold electrode chips were employed to evaluate the electrochemical signals generated from interactions between the aptamers and the target molecules. The DNA aptamer immobilization on the gold electrode was based on the avidin-biotin interaction. The cyclic voltametry (CV) and square wave voltametry (SWV) values were measured to evaluate the chemical binding to aptamer. When 17beta-estradiol interacted with the DNA aptamer, the current decreased due to the interference of bound 17beta-estradiol with the electron flow produced by a redox reaction between ferrocyanide and ferricyanide. In the negative control experiments, the current decreased only mildly due to the presence of other chemicals.  相似文献   

17.
Aptamers represent an emerging strategy to deliver cargo molecules, including dyes, drugs, proteins or even genes, into specific target cells. Upon binding to specific cell surface receptors aptamers can be internalized, for example by macropinocytosis or receptor mediated endocytosis. Here we report the in vitro selection and characterization of RNA aptamers with high affinity (Kd = 20 nM) and specificity for the human IL-6 receptor (IL-6R). Importantly, these aptamers trigger uptake without compromising the interaction of IL-6R with its natural ligands the cytokine IL-6 and glycoprotein 130 (gp130). We further optimized the aptamers to obtain a shortened, only 19-nt RNA oligonucleotide retaining all necessary characteristics for high affinity and selective recognition of IL-6R on cell surfaces. Upon incubation with IL-6R presenting cells this aptamer was rapidly internalized. Importantly, we could use our aptamer, to deliver bulky cargos, exemplified by fluorescently labeled streptavidin, into IL-6R presenting cells, thereby setting the stage for an aptamer-mediated escort of drug molecules to diseased cell populations or tissues.  相似文献   

18.
In vitro selection of single-stranded nucleic acid aptamers from large random sequence libraries is now a straightforward process particularly when screening with a single target molecule. These libraries contain considerable shape diversity as evident by the successful isolation of aptamers that bind with high affinity and specificity to chemically diverse targets. We propose that aptamer libraries contain sufficient shape diversity to allow deconvolution of a complex mixture of targets. Using unfractionated human plasma as our experimental model, we aim to develop methods to obtain aptamers against as many proteins as possible. To begin, it is critical that we understand how aptamer populations change with increasing rounds of in vitro selection when using complex mixtures. Our results show that sequence representation in the selected population changes dramatically with increasing rounds of selection. Certain aptamer families were apparent after only three selection rounds. Two additional cycles saw a decline in the relative abundance of these families and the emergence of yet another family that accounted for more than 60% of sequences in the pool. To overcome this population convergence, an aptamer-based target depletion method was developed, and the library screen was repeated. The previous dominant family effectively disappeared from the selected populations but was replaced by other aptamer families. Insights gained from these initial experiments are now being applied in the creation of second generation plasma protein screens and also to the analysis of other complex biological targets.  相似文献   

19.
20.
Ahmad KM  Oh SS  Kim S  McClellen FM  Xiao Y  Soh HT 《PloS one》2011,6(11):e27051
Nucleic acid-based aptamers offer many potential advantages relative to antibodies and other protein-based affinity reagents, including facile chemical synthesis, reversible folding, improved thermal stability and lower cost. However, their selection requires significant time and resources and selections often fail to yield molecules with affinities sufficient for molecular diagnostics or therapeutics. Toward a selection technique that can efficiently and reproducibly generate high performance aptamers, we have developed a microfluidic selection process (M-SELEX) that can be used to obtain high affinity aptamers against diverse protein targets. Here, we isolated DNA aptamers against three protein targets with different isoelectric points (pI) using a common protocol. After only three rounds of selection, we discovered novel aptamer sequences that bind to platelet derived growth factor B (PDGF-BB; pI = 9.3) and thrombin (pI = 8.3) with respective dissociation constants (Kd) of 0.028 nM and 0.33 nM, which are both superior to previously reported aptamers against these targets. In parallel, we discovered a new aptamer that binds to apolipoprotein E3 (ApoE; pI = 5.3) with a Kd of 3.1 nM. Furthermore, we observe that the net protein charge may exert influence on the affinity of the selected aptamers. To further explore this relationship, we performed selections against PDGF-BB under different pH conditions using the same selection protocol, and report an inverse correlation between protein charge and aptamer Kd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号