共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation 总被引:2,自引:0,他引:2
Nadauld LD Sandoval IT Chidester S Yost HJ Jones DA 《The Journal of biological chemistry》2004,279(49):51581-51589
Mutations in the APC (adenomatous polyposis coli) tumor suppressor gene cause uncontrolled proliferation and impaired differentiation of intestinal epithelial cells. Recent studies indicate that human colon adenomas and carcinomas lack retinol dehydrogenases (RDHs) and that APC regulates the expression of human RDHL. These data suggest a model wherein APC controls enterocyte differentiation by controlling retinoic acid production. However, the importance of APC and retinoic acid in mediating control of normal enterocyte development and differentiation remains unclear. To examine the relationship between APC and retinoic acid biosynthesis in normal enterocytes, we have identified two novel zebrafish retinol dehydrogenases, termed zRDHA and zRDHB, that show strong expression within the gut of developing zebrafish embryos. Morpholino knockdown of either APC or zRDHB in zebrafish embryos resulted in defects in structures known to require retinoic acid. These defects included cardiac abnormalities, pericardial edema, failed jaw and pectoral fin development, and the absence of differentiated endocrine and exocrine pancreas. In addition, APC or zRDHB morphant fish developed intestines that lacked columnar epithelial cells and failed to express the differentiation marker intestinal fatty acid-binding protein. Treatment of either APC or zRDHB morphant embryos with retinoic acid rescued the defective phenotypes. Downstream of retinoic acid production, we identified hoxc8 as a retinoic acid-induced gene that, when ectopically expressed, rescued phenotypes of APC- and zRDHB-deficient zebrafish. Our data establish a genetic link supporting a critical role for retinoic acid downstream of APC and confirm the importance of retinoic acid in enterocyte differentiation. 相似文献
4.
5.
Hale LA Tallafuss A Yan YL Dudley L Eisen JS Postlethwait JH 《Gene expression patterns : GEP》2006,6(5):546-555
Retinoic acid signaling is important for patterning the central nervous system, paired appendages, digestive tract, and other organs. To begin to investigate retinoic acid signaling in zebrafish, we determined orthologies between zebrafish and tetrapod retinoic acid receptors (Rars) and examined the expression patterns of rar genes during embryonic development. Analysis of phylogenies and conserved syntenies showed that the three cloned zebrafish rar genes include raraa and rarab, which are co-orthologs of tetrapod Rara, and rarg, which is the zebrafish ortholog of tetrapod Rarg. We did not, however, find an ortholog of Rarb. RNA in situ hybridization experiments showed that rarab and rarg, are maternally expressed. Zygotic expression of raraa occurs predominantly in the hindbrain, lateral mesoderm, and tailbud. Zygotic expression of rarab largely overlaps that of raraa, except that in later stages rarab is expressed more broadly in the brain and in the pectoral fin bud and pharyngeal arches. Zygotic expression of zebrafish rarg also overlaps the other two genes, but it is expressed more strongly in the posterior hindbrain beginning in late somitogenesis as well as in neural crest cells in the pharyngeal arches. Thus, these three genes have largely overlapping expression patterns and a few gene-specific expression domains. Knowledge of these expression patterns will guide the interpretation of the roles these genes play in development. 相似文献
6.
Regulation of pancreas development by hedgehog signaling 总被引:27,自引:0,他引:27
Hebrok M Kim SK St Jacques B McMahon AP Melton DA 《Development (Cambridge, England)》2000,127(22):4905-4913
Pancreas organogenesis is regulated by the interaction of distinct signaling pathways that promote or restrict morphogenesis and cell differentiation. Previous work has shown that activin, a TGF(beta+) signaling molecule, permits pancreas development by repressing expression of Sonic hedgehog (Shh), a member of the hedgehog family of signaling molecules that antagonize pancreas development. Here we show that Indian hedgehog (Ihh), another hedgehog family member, and Patched 1 (Ptc1), a receptor and negative regulator of hedgehog activity, are expressed in pancreatic tissue. Targeted inactivation of Ihh in mice allows ectopic branching of ventral pancreatic tissue resulting in an annulus that encircles the duodenum, a phenotype frequently observed in humans suffering from a rare disorder known as annular pancreas. Shh(-)(/)(-) and Shh(-)(/)(-) Ihh(+/)(-) mutants have a threefold increase in pancreas mass, and a fourfold increase in pancreatic endocrine cell numbers. In contrast, mutations in Ptc1 reduce pancreas gene expression and impair glucose homeostasis. Thus, islet cell, pancreatic mass and pancreatic morphogenesis are regulated by hedgehog signaling molecules expressed within and adjacent to the embryonic pancreas. Defects in hedgehog signaling may lead to congenital pancreatic malformations and glucose intolerance. 相似文献
7.
L Xu Z Feng D Sinha B Ducos Y Ebenstein AD Tadmor C Gauron T Le Saux S Lin S Weiss S Vriz L Jullien D Bensimon 《Development (Cambridge, England)》2012,139(18):3355-3362
All-trans retinoic acid (RA) is a key player in many developmental pathways. Most methods used to study its effects in development involve continuous all-trans RA activation by incubation in a solution of all-trans RA or by implanting all-trans RA-soaked beads at desired locations in the embryo. Here we show that the UV-driven photo-isomerization of 13-cis RA to the trans-isomer (and vice versa) can be used to non-invasively and quantitatively control the concentration of all-trans RA in a developing embryo in time and space. This facilitates the global or local perturbation of developmental pathways with a pulse of all-trans RA of known concentration or its inactivation by UV illumination. In zebrafish embryos in which endogenous synthesis of all-trans RA is impaired, incubation for as little as 5 minutes in 1 nM all-trans RA (a pulse) or 5 nM 13-cis RA followed by 1-minute UV illumination is sufficient to rescue the development of the hindbrain if performed no later than bud stage. However, if subsequent to this all-trans RA pulse the embryo is illuminated (no later than bud stage) for 1 minute with UV light (to isomerize, i.e. deactivate, all-trans RA), the rescue of hindbrain development is impaired. This suggests that all-trans RA is sequestered in embryos that have been transiently exposed to it. Using 13-cis RA isomerization with UV light, we further show that local illumination at bud stage of the head region (but not the tail) is sufficient to rescue hindbrain formation in embryos whose all-trans RA synthetic pathway has been impaired. 相似文献
8.
Kim HJ Sumanas S Palencia-Desai S Dong Y Chen JN Lin S 《Molecular endocrinology (Baltimore, Md.)》2006,20(1):194-203
Endocrine pancreas of zebrafish consist of at least four different cell types that function similarly to mammalian pancreatic islet. No mutants specifically affecting formation of the endocrine pancreas have been identified during the previous large-scale mutagenesis screens in zebrafish due to invisibility of a pancreatic islet. We combined in situ hybridization method to visualize pancreatic islet with an ethyl-nitroso-urea mutagenesis screen to identify novel genes involved in pancreatic islet formation in zebrafish. We screened 900 genomes and identified 11 mutations belonging to nine different complementation groups. These mutants fall into three major phenotypic classes displaying severely reduced insulin expression, reduced insulin expression with abnormal islet morphology, or abnormal islet morphology with relatively normal number of insulin expressing cells. Seven of these mutants do not have any other visible phenotypes associated. These mutations affect different processes in pancreatic islet development. Additional analysis on glucagon and somatostatin cell specification revealed that somatostatin cells are specified at a separate domain from insulin cells whereas glucagon cells are specified adjacent to insulin cells. Furthermore, glucagon cells and somatostatin cells are always associated with insulin cells in mutants that have scattered insulin expression. These data indicate that there are separate mechanisms regulating endocrine cell migration, proliferation, and differentiation. Further study on these mutants will reveal important information on novel genes involved in pancreatic islet cell specification and morphogenesis. 相似文献
9.
10.
11.
Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development. 相似文献
12.
13.
Cell lineage analysis is critical in understanding the relationship between progenitors and differentiated cells as well as the mechanism underlying the process of differentiation. In order to study the zebrafish endocrine pancreas cell lineage, transgenic expression of diphtheria toxin gene A chain (DTA) under two cell type-specific promoters derived from the insulin (ins) and somatostatin2 (sst2) genes was used to ablate the two types of endocrine cells: insulin-producing β-cells and somatostatin-producing δ-cells, respectively. We found that ablation of β-cells resulted in a reduction of not only β-cells but also glucagon-producing α-cells; in contrast, δ-cells were largely unaffected. Ablation of δ-cells led to reduction of all three types of endocrine cells: α-, β-, and δ. Interestingly, α-cells were more profoundly affected in both β- and δ-cell ablations and were frequently reduced together with β- and δ-cells. By taking advantage of Tg(ins:gfp) and Tg(sst2:gfp) lines, we also monitored the changes of different types of endocrine cells in vivo after ablation and found that both β- and δ-cell populations significantly recovered by 3 dpf after their ablation and it seemed that δ-cells had a better capability of recovery than β-cells. Thus, our current observations indicated differential interdependence of these three cell lineages. The development of zebrafish α-cells, but not δ-cells, is dependent on β-cells, while the development of both α- and β-cells is dependent on δ-cells. In contrast, the development of δ-cells was independent of β-cells. 相似文献
14.
15.
Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos 总被引:2,自引:0,他引:2
Reversade B Kuroda H Lee H Mays A De Robertis EM 《Development (Cambridge, England)》2005,132(15):3381-3392
To address the patterning function of the Bmp2, Bmp4 and Bmp7 growth factors, we designed antisense morpholino oligomers (MO) that block their activity in Xenopus laevis. Bmp4 knockdown was sufficient to rescue the ventralizing effects caused by loss of Chordin activity. Double Bmp4 and Bmp7 knockdown inhibited tail development. Triple Bmp2/Bmp4/Bmp7 depletion further compromised trunk development but did not eliminate dorsoventral patterning. Unexpectedly, we found that blocking Spemann organizer formation by UV treatment or beta-Catenin depletion caused BMP inhibition to have much more potent effects, abolishing all ventral development and resulting in embryos having radial central nervous system (CNS) structures. Surprisingly, dorsal signaling molecules such as Chordin, Noggin, Xnr6 and Cerberus were not re-expressed in these embryos. We conclude that BMP inhibition is sufficient for neural induction in vivo, and that in the absence of ventral BMPs, Spemann organizer signals are not required for brain formation. 相似文献
16.
Kawahira H Ma NH Tzanakakis ES McMahon AP Chuang PT Hebrok M 《Development (Cambridge, England)》2003,130(20):4871-4879
Hedgehog signaling is known to regulate tissue morphogenesis and cell differentiation in a dose-dependent manner. Loss of Indian hedgehog (Ihh) results in reduction in pancreas size, indicating a requirement for hedgehog signaling during pancreas development. By contrast, ectopic expression of sonic hedgehog (Shh) inhibits pancreatic marker expression and results in transformation of pancreatic mesenchyme into duodenal mesoderm. These observations suggest that hedgehog signaling activity has to be regulated tightly to ensure proper pancreas development. We have analyzed the function of two hedgehog inhibitors, Hhip and patched 1 (Ptch), during pancreas formation. Our results indicated that loss of Hhip results in increased hedgehog signaling within the pancreas anlage. Pancreas morphogenesis, islet formation and endocrine cell proliferation is impaired in Hhip mutant embryos. Additional loss of one Ptch allele in Hhip-/-Ptch+/- embryos further impairs pancreatic growth and endodermal cell differentiation. These results demonstrate combined requirements for Hhip and Ptch during pancreas development and point to a dose-dependent response to hedgehog signaling within pancreatic tissue. Reduction of Fgf10 expression in Hhip homozygous mutants suggests that at least some of the observed phenotypes result from hedgehog-mediated inhibition of Fgf signaling at early stages. 相似文献
17.
Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development 总被引:3,自引:0,他引:3
Bone morphogenetic protein (Bmp) signaling is crucial for the formation and patterning of zebrafish ventral and posterior mesoderm. Mutants defective in the Bmp pathway have expanded trunk muscle, abnormal tails and severely impaired development of ventral mesodermal derivatives such as vasculature, blood and pronephros. As Bmps continue to be expressed in the ventral and posterior mesoderm after gastrulation, it is likely that Bmp signaling continues to play an important developmental role during outgrowth of the posterior body. However, because Bmp signaling plays an essential role during the gastrula stages, it has not been possible with mutants or standard disruption techniques to determine the later functions of the Bmp pathway. To study the role of Bmp signaling in the ventral and posterior mesoderm during trunk and tail outgrowth, we generated a transgenic zebrafish line containing a heatshock-inducible dominant-negative Bmp receptor-GFP fusion. Our data show that Bmps are important for tail organizer formation and for patterning the ventral mesoderm during early gastrulation. However, from mid-gastrulation to the early somitogenesis stages, Bmp signaling is important for ventral tail fin development and for preventing secondary tail formation. We conclude that the role of Bmp signaling in the ventral and posterior mesoderm changes as gastrulation proceeds. 相似文献
18.
Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. 总被引:2,自引:0,他引:2
P G Franco A R Paganelli S L López A E Carrasco 《Development (Cambridge, England)》1999,126(19):4257-4265
Previous work has shown that the posteriorising agent retinoic acid can accelerate anterior neuronal differentiation in Xenopus laevis embryos (Papalopulu, N. and Kintner, C. (1996) Development 122, 3409-3418). To elucidate the role of retinoic acid in the primary neurogenesis cascade, we investigated whether retinoic acid treatment of whole embryos could change the spatial expression of a set of genes known to be involved in neurogenesis. We show that retinoic acid expands the N-tubulin, X-ngnr-1, X-MyT1, X-&Dgr;-1 and Gli3 domains and inhibits the expression of Zic2 and sonic hedgehog in the neural ectoderm, whereas a retinoid antagonist produces opposite changes. In contrast, sonic and banded hedgehog overexpression reduced the N-tubulin stripes, enlarged the neural plate at the expense of the neural crest, downregulated Gli3 and upregulated Zic2. Thus, retinoic acid and hedgehog signaling have opposite effects on the prepattern genes Gli3 and Zic2 and on other genes acting downstream in the neurogenesis cascade. In addition, retinoic acid cannot rescue the inhibitory effect of Notch(ICD), Zic2 or sonic hedgehog on primary neurogenesis. Our results suggest that retinoic acid acts very early, upstream of sonic hedgehog, and we propose a model for regulation of differentiation and proliferation in the neural plate, showing that retinoic acid might be activating primary neurogenesis by repressing sonic hedgehog expression. 相似文献
19.
20.