首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In some forms of cardiac hypertrophy and failure, the gain of Ca(2+)-induced Ca(2+) release [CICR; i.e., the amount of Ca(2+) released from the sarcoplasmic reticulum normalized to Ca(2+) influx through L-type Ca(2+) channels (LTCCs)] decreases despite the normal whole cell LTCC current density, ryanodine receptor number, and sarcoplasmic reticulum Ca(2+) content. This decrease in CICR gain has been proposed to arise from a change in dyad architecture or derangement of the t-tubular (TT) structure. However, the activity of surface sarcolemmal LTCCs has been reported to increase despite the unaltered whole cell LTCC current density in failing human ventricular myocytes, indicating that the "decreased CICR gain" may reflect a decrease in the TT LTCC current density in heart failure. Thus, we analyzed LTCC currents of failing ventricular myocytes of mice chronically treated with isoproterenol (Iso). Although Iso-treated mice exhibited intact t-tubules and normal LTCC subunit expression, acute occlusion of t-tubules of isolated ventricular myocytes with osmotic shock (detubulation) revealed that the TT LTCC current density was halved in Iso-treated versus control myocytes. Pharmacological analysis indicated that kinases other than PKA or Ca(2+)/calmodulin-dependent protein kinase II insufficiently activated, whereas protein phosphatase 1/2A excessively suppressed, TT LTCCs in Iso-treated versus control myocytes. These results indicate that excessive β-adrenergic stimulation causes the decrease in TT LTCC current density by altering the regulation of TT LTCCs by protein kinases and phosphatases in heart failure. This phenomenon might underlie the decreased CICR gain in heart failure.  相似文献   

2.
L-type Ca(2+) channels (LTCCs) play a critical role in Ca(2+)-dependent signaling processes in a variety of cell types. The number of functional LTCCs at the plasma membrane strongly influences the strength and duration of Ca(2+) signals. Recent studies demonstrated that endosomal trafficking provides a mechanism for dynamic changes in LTCC surface membrane density. The purpose of the current study was to determine whether the small GTPase Rab11b, a known regulator of endosomal recycling, impacts plasmalemmal expression of Ca(v)1.2 LTCCs. Disruption of endogenous Rab11b function with a dominant negative Rab11b S25N mutant led to a significant 64% increase in peak L-type Ba(2+) current (I(Ba,L)) in human embryonic kidney (HEK)293 cells. Short-hairpin RNA (shRNA)-mediated knockdown of Rab11b also significantly increased peak I(Ba,L) by 66% compared when with cells transfected with control shRNA, whereas knockdown of Rab11a did not impact I(Ba,L). Rab11b S25N led to a 1.7-fold increase in plasma membrane density of hemagglutinin epitope-tagged Ca(v)1.2 expressed in HEK293 cells. Cell surface biotinylation experiments demonstrated that Rab11b S25N does not significantly impact anterograde trafficking of LTCCs to the surface membrane but rather slows degradation of plasmalemmal Ca(v)1.2 channels. We further demonstrated Rab11b expression in ventricular myocardium and showed that Rab11b S25N significantly increases peak I(Ba,L) by 98% in neonatal mouse cardiac myocytes. These findings reveal a novel role for Rab11b in limiting, rather than promoting, the plasma membrane expression of Ca(v)1.2 LTCCs in contrast to its effects on other ion channels including human ether-a-go-go-related gene (hERG) K(+) channels and cystic fibrosis transmembrane conductance regulator. This suggests Rab11b differentially regulates the trafficking of distinct cargo and extends our understanding of how endosomal transport impacts the functional expression of LTCCs.  相似文献   

3.
Voltage-gated L-type calcium channels (LTCCs) are expressed in adrenal chromaffin cells. Besides shaping the action potential (AP), LTCCs are involved in the excitation-secretion coupling controlling catecholamine release and in Ca (2+) -dependent vesicle retrieval. Of the two LTCCs expressed in chromaffin cells (CaV1.2 and CaV1.3), CaV1.3 possesses the prerequisites for pacemaking spontaneously firing cells: low-threshold, steep voltage-dependence of activation and slow inactivation. By using CaV1 .3 (-/-) KO mice and the AP-clamp it has been possible to resolve the time course of CaV1.3 pacemaker currents, which is similar to that regulating substantia nigra dopaminergic neurons. In mouse chromaffin cells CaV1.3 is coupled to fast-inactivating BK channels within membrane nanodomains and controls AP repolarization. The ability to carry subthreshold Ca (2+) currents and activate BK channels confers to CaV1.3 the unique feature of driving Ca (2+) loading during long interspike intervals and, possibly, to control the Ca (2+) -dependent exocytosis and endocytosis processes that regulate catecholamine secretion and vesicle recycling.  相似文献   

4.
L-type Ca(2+) channels (LTCCs) are major entry points for Ca(2+) in many cells. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is associated with cardiac LTCC complexes and increases channel open probability (P(O)) to dynamically increase Ca(2+) current (I(Ca)) and augment cellular Ca(2+) signaling by a process called facilitation. However, the critical molecular mechanisms for CaMKII localization to LTCCs and I(Ca) facilitation in cardiomyocytes have not been defined. We show CaMKII binds to the LTCC beta(2a) subunit and preferentially phosphorylates Thr498 in beta(2a). Mutation of Thr498 to Ala (T498A) in beta(2a) prevents CaMKII-mediated increases in the P(O) of recombinant LTCCs. Moreover, expression of beta(2a)(T498A) in adult cardiomyocytes ablates CaMKII-mediated I(Ca) facilitation, demonstrating that phosphorylation of beta(2a) at Thr498 modulates native calcium channels. These findings reveal a molecular mechanism for targeting CaMKII to LTCCs and facilitating I(Ca) that may modulate Ca(2+) entry in diverse cell types coexpressing CaMKII and the beta(2a) subunit.  相似文献   

5.
L-type Ca2+ channels in Ca2+ channelopathies   总被引:3,自引:0,他引:3  
Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases.  相似文献   

6.
Heavy metals, including gold, induce severe contact hypersensitivity and autoimmune disorders, which develop through an initial Th2-independent process followed by a Th2-dependent process. It has been shown that mast cell activation plays a role in the Th2-independent process and that gold stimulates histamine release in vitro. However, the mechanisms of the gold-induced mast cell activation remain largely unclear. Here we report that gold directly activates mast cells in a Ca2+-dependent manner. HAuCl4 [Au(III)] at nontoxic concentrations (≤50 μM) induced substantial degranulation and leukotriene C4 secretion in an extracellular Ca2+-dependent manner. Au(III) induced a robust Ca2+ influx but not Ca2+ mobilization from internal stores. Au(III) also stimulated intracellular production of reactive oxygen species, including H2O2, and blockade of the production abolished the mediator release and Ca2+ influx. Au(III) induced Ca2+ influx through multiple store-independent Ca2+ channels, including Cav1.2 L-type Ca2+ channels (LTCCs) and 2-aminoethoxydiphenyl borate (2-APB)-sensitive Ca2+ channels. The 2-APB-sensitive channel seemed to mediate Au(III)-induced degranulation. Our results indicate that gold stimulates Ca2+ influx and mediator release in mast cells through multiple H2O2-sensitive Ca2+ channels including LTCCs and 2-APB-sensitive Ca2+ channels. These findings provide insight into the roles of these Ca2+ channels in the Th2-independent process of gold-induced immunological disorders.  相似文献   

7.
Xu J  Clancy CE 《PloS one》2008,3(4):e2056
A critical property of some neurons is burst firing, which in the hippocampus plays a primary role in reliable transmission of electrical signals. However, bursting may also contribute to synchronization of electrical activity in networks of neurons, a hallmark of epilepsy. Understanding the ionic mechanisms of bursting in a single neuron, and how mutations associated with epilepsy modify these mechanisms, is an important building block for understanding the emergent network behaviors. We present a single-compartment model of a CA3 hippocampal pyramidal neuron based on recent experimental data. We then use the model to determine the roles of primary depolarizing currents in burst generation. The single compartment model incorporates accurate representations of sodium (Na(+)) channels (Na(V)1.1) and T-type calcium (Ca(2+)) channel subtypes (Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3). Our simulations predict the importance of Na(+) and T-type Ca(2+) channels in hippocampal pyramidal cell bursting and reveal the distinct contribution of each subtype to burst morphology. We also performed fast-slow analysis in a reduced comparable model, which shows that our model burst is generated as a result of the interaction of two slow variables, the T-type Ca(2+) channel activation gate and the Ca(2+)-dependent potassium (K(+)) channel activation gate. The model reproduces a range of experimentally observed phenomena including afterdepolarizing potentials, spike widening at the end of the burst, and rebound. Finally, we use the model to simulate the effects of two epilepsy-linked mutations: R1648H in Na(V)1.1 and C456S in Ca(V)3.2, both of which result in increased cellular excitability.  相似文献   

8.
The bronchial vasculature plays an important role in airway physiology and pathophysiology. We investigated the ion currents in canine bronchial smooth muscle cells using patch-clamp techniques. Sustained outward K(+) current evoked by step depolarizations was significantly inhibited by tetraethylamonium (1 and 10 mM) or by charybdotoxin (10(-6) M) but was not significantly affected by 4-aminopyridine (1 or 5 mM), suggesting that it was primarily a Ca(2+)-activated K(+) current. Consistent with this, the K(+) current was markedly increased by raising external Ca(2+) to 4 mM but was decreased by nifedipine (10(-6) M) or by removing external Ca(2+). When K(+) currents were blocked (by Cs(+) in the pipette), step depolarizations evoked transient inward currents with characteristics of L-type Ca(2+) current as follows: 1) activation that was voltage dependent (threshold and maximal at -50 and -10 mV, respectively); 2) inactivation that was time dependent and voltage dependent (voltage causing 50% maximal inactivation of -26 +/- 22 mV); and 3) blockade by nifedipine (10(-6) M). The thromboxane mimetic U-46619 (10(-6) M) caused a marked augmentation of outward K(+) current (as did 10 mM caffeine) lasting only 10-20 s; this was followed by significant suppression of the K(+) current lasting several minutes. Phenylephrine (10(-4) M) also suppressed the K(+) current to a similar degree but did not cause the initial transient augmentation. None of these three agonists elicited inward current of any kind. We conclude that bronchial arterial smooth muscle expresses Ca(2+)-dependent K(+) channels and voltage-dependent Ca(2+) channels and that its excitation does not involve activation of Cl(-) channels.  相似文献   

9.
Isaacson JS  Murphy GJ 《Neuron》2001,31(6):1027-1034
NMDA receptors (NMDARs) typically contribute to excitatory synaptic transmission in the CNS. While Ca(2+) influx through NMDARs plays a critical role in synaptic plasticity, direct actions of NMDAR-mediated Ca(2+) influx on neuronal excitability have not been well established. Here we show that Ca(2+) influx through NMDARs is directly coupled to activation of BK-type Ca(2+)-activated K+ channels in outside-out membrane patches from rat olfactory bulb granule cells. Repetitive stimulation of glutamatergic synapses in olfactory bulb slices evokes a slow inhibitory postsynaptic current (IPSC) in granule cells that requires both NMDARs and BK channels. The slow IPSC is enhanced by glutamate uptake blockers, suggesting that extrasynaptic NMDARs underlie the response. These findings reveal a novel inhibitory action of extrasynaptic NMDARs in the brain.  相似文献   

10.
Intracellular Ca(2+) waves and spontaneous transient depolarizations were investigated in gallbladder smooth muscle (GBSM) whole mount preparations with intact mucosal layer [full thickness (FT)] by laser confocal imaging of intracellular Ca(2+) and voltage recordings with microelectrodes, respectively. Spontaneous Ca(2+) waves arose most often near the center, but sometimes from the extremities, of GBSM cells. They propagated regeneratively by Ca(2+)-induced Ca(2+) release involving inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptors and were not affected by TTX and atropine (ATS). Spontaneous Ca(2+) waves and spontaneous transient depolarizations were more prevalent in FT than in isolated muscularis layer preparations and occurred with similar pattern in GBSM bundles. Ca(2+) waves were abolished by the Ins(1,4,5)P(3) receptor inhibitors 2-aminoethoxydiphenyl borate and xestospongin C and by caffeine and cyclopiazonic acid. These events were reduced by voltage-dependent calcium channels (VDCCs) inhibitors diltiazem and nifedipine, by PLC inhibitor U-73122, and by thapsigargin and ryanodine. ACh, CCK, and carbachol augmented Ca(2+) waves and induced Ca(2+) flashes. The actions of these agonists were inhibited by U-73122. These results indicate that in GBSM, discharge and propagation of Ca(2+) waves depend on sarco(endo)plasmic reticulum (SR) Ca(2+) release via Ins(1,4,5)P(3) receptors, PLC activity, Ca(2+) influx via VDCCs, and SR Ca(2+) concentration. Neurohormonal enhancement of GBSM excitability involves PLC-dependent augmentation and synchronization of SR Ca(2+) release via Ins(1,4,5)P(3) receptors. Ca(2+) waves likely reflect the activity of a fundamental unit of spontaneous activity and play an important role in the excitability of GBSM.  相似文献   

11.
We have investigated the mechanisms by which activation of cannabinoid receptors reduces glutamate release from cerebrocortical nerve terminals. Glutamate release evoked by depolarization of nerve terminals with high KCl (30 mmol/L) involves N and P/Q type Ca(2+)channel activation. However, this release of glutamate is independent of Na(+) or K(+) channel activation as it was unaffected by blockers of these channels (tetrodotoxin -TTX- or tetraethylammonium TEA). Under these conditions in which only Ca(2+) channels contribute to pre-synaptic activity, the activation of cannabinoid receptors with WIN55,212-2 moderately reduced glutamate release (26.4 +/- 1.2%) by a mechanism that in this in vitro model is resistant to TTX and consistent with the inhibition of Ca(2+) channels. However, when nerve terminals are stimulated with low KCl concentrations (5-10 mmol/L) glutamate release is affected by both Ca(2+) antagonists and also by TTX and TEA, indicating the participation of Na(+) and K(+) channel firing in addition to Ca(2+) channel activation. Interestingly, stimulation of nerve terminals with low KCl concentrations uncovered a mechanism that further inhibited glutamate release (81.78 +/- 4.9%) and that was fully reversed by TEA. This additional mechanism is TTX-sensitive and consistent with the activation of K(+) channels. Furthermore, Ca(2+) imaging of single boutons demonstrated that the two pre-synaptic mechanisms by which cannabinoid receptors reduce glutamate release operate in distinct populations of nerve terminals.  相似文献   

12.
L-type Ca(2+) channels (LTCCs) play an essential role in the excitation-contraction coupling of ventricular myocytes. We previously found that t-tubular (TT) LTCC current density was halved by the activation of protein phosphatase (PP)1 and/or PP2A, whereas surface sarcolemmal (SS) LTCC current density was increased by the inhibition of PP1 and/or PP2A activity in failing ventricular myocytes of mice chronically treated with isoproterenol (ISO mice). In the present study, we examined the possible involvement of inhibitory heterotrimeric G proteins (G(i/o)) in these abnormalities by chronically administrating pertussis toxin (PTX) to ISO mice (ISO + PTX mice). Compared with ISO mice, ISO + PTX mice exhibited significantly higher fractional shortening of the left ventricle. The expression level of Gα(i2) proteins was not altered by the treatment of mice with ISO and/or PTX. ISO + PTX myocytes had normal TT and SS LTCC current densities because they had higher and lower availability and/or open probability of TT and SS LTCCs than ISO myocytes, respectively. A selective PKA inhibitor, H-89, did not affect LTCC current densities in ISO + PTX myocytes. A selective PP2A inhibitor, fostriecin, did not affect SS or TT current density in control or ISO + PTX myocytes but significantly increased TT but not SS LTCC current density in ISO myocytes. These results indicate that chronic receptor-mediated activation of G(i/o) in vivo decreases basal TT LTCC activity by activating PP2A and increases basal SS LTCC activity by inhibiting PP1 without modulating PKA in heart failure.  相似文献   

13.
Members of the superfamily of transient receptor potential (TRP) channels are proposed to play important roles in sensory physiology. As an excitatory ion channel TRPA1 is robustly activated by pungent irritants in mustard and garlic and is suggested to mediate the inflammatory actions of environmental irritants and proalgesic agents. Here, we demonstrate that, in addition to pungent natural compounds, Ca(2+) directly gates heterologously expressed TRPA1 in whole-cell and excised-patch recordings with an apparent EC(50) of 905 nm. Pharmacological experiments and site-directed mutagenesis indicate that the N-terminal EF-hand calcium-binding domain of the channel is involved in Ca(2+)-dependent activation. Furthermore, we determine Ca(2+) as prerequisite for icilin activity on TRPA1.  相似文献   

14.
Ca(2+) influx by store-operated Ca(2+) channels is a key component of the receptor-evoked Ca(2+) signal. In all cells examined, transient receptor potential canonical (TRPC) channels mediate a significant portion of the receptor-stimulated Ca(2+) influx. Recent studies have revealed how STIM1 activates TRPC1 in response to store depletion; however, the role of STIM1 in TRPC channel activation by receptor stimulation is not fully understood. Here, we established mutants of TRPC channels that could not be activated by STIM1 but were activated by the "charge-swap" mutant STIM1(K684E,K685E). Significantly, WT but not mutant TRPC channels were inhibited by scavenging STIM1 with Orai1(R91W), indicating the STIM1 dependence and independence of WT and mutant TRPC channels, respectively. Importantly, mutant TRPC channels were robustly activated by receptor stimulation. Moreover, STIM1 and STIM1(K684E,K685E) reciprocally affected receptor-activated WT and mutant TRPC channels. Together, these findings indicate that TRPC channels can function as STIM1-dependent and STIM1-independent channels, which increases the versatility of TRPC channel function and their role in receptor-stimulated Ca(2+) influx.  相似文献   

15.
(Na(+)+K(+))-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na(+)/Ca(2+)-exchanger (NCX) plays a critical role in increasing intracellular Ca(2+) concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on (45)Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced (45)Ca influx, suggesting that the Ca(2+) influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca(2+) channel (LTCC) inhibitor, completely blocks the activation of NKA-induced (45)Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca(2+). In contrast, the inhibition of NKA by ouabain induces 4.7-fold (45)Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced (45)Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca(2+) and that the NCX reverse-mode is the major source for the (45)Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca(2+) increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca(2+) influx path ways in cardiomyocytes.  相似文献   

16.
Voltage gated Ca(2+) channels are effective voltage sensors of plasma membrane which convert cell depolarizations into Ca(2+) signaling. The chromaffin cells of the adrenal medulla utilize a large number of Ca(2+) channel types to drive the Ca(2+)-dependent release of catecholamines into blood circulation, during normal or stress-induced conditions. Some of the Ca(2+) channels expressed in chromaffin cells (L, N, P/Q, R and T), however, do not control only vesicle fusion and catecholamine release. They also subserve a variety of key activities which are vital for the physiological and pathological functioning of the cell, like: (i) shaping the action potentials of electrical oscillations driven either spontaneously or by ACh stimulation, (ii) controlling the action potential frequency of tonic or bursts firing, (iii) regulating the compensatory and excess endocytosis following robust exocytosis and (iv) driving the remodeling of Ca(2+) signaling which occurs during stressors stimulation. Here, we will briefly review the well-established properties of voltage-gated Ca(2+) channels accumulated over the past three decades focusing on the most recent discoveries on the role that L- (Cav1.2, Cav1.3) and T-type (Cav3.2) channels play in the control of excitability, exocytosis and endocytosis of chromaffin cells in normal and stress-mimicking conditions.  相似文献   

17.
The TTX-sensitive Ca(2+) current [I(Ca(TTX))] observed in cardiac myocytes under Na(+)-free conditions was investigated using patch-clamp and Ca(2+)-imaging methods. Cs(+) and Ca(2+) were found to contribute to I(Ca(TTX)), but TEA(+) and N-methyl-D-glucamine (NMDG(+)) did not. HEK-293 cells transfected with cardiac Na(+) channels exhibited a current that resembled I(Ca(TTX)) in cardiac myocytes with regard to voltage dependence, inactivation kinetics, and ion selectivity, suggesting that the cardiac Na(+) channel itself gives rise to I(Ca(TTX)). Furthermore, repeated activation of I(Ca(TTX)) led to a 60% increase in intracellular Ca(2+) concentration, confirming Ca(2+) entry through this current. Ba(2+) permeation of I(Ca(TTX)), reported by others, did not occur in rat myocytes or in HEK-293 cells expressing cardiac Na(+) channels under our experimental conditions. The report of block of I(Ca(TTX)) in guinea pig heart by mibefradil (10 microM) was supported in transfected HEK-293 cells, but Na(+) current was also blocked (half-block at 0.45 microM). We conclude that I(Ca(TTX)) reflects current through cardiac Na(+) channels in Na(+)-free (or "null") conditions. We suggest that the current be renamed I(Na(null)) to more accurately reflect the molecular identity of the channel and the conditions needed for its activation. The relationship between I(Na(null)) and Ca(2+) flux through slip-mode conductance of cardiac Na(+) channels is discussed in the context of ion channel biophysics and "permeation plasticity."  相似文献   

18.
In isolated slices of hypothalamus, suprachiasmatic nucleus (SCN) neurons were recorded intracellularly. Blockade of Ca++ channels increased spike duration, eliminating an early component of the afterhyperpolarization (AHP) that followed evoked spikes. The duration and reversal potential of AHPs were, however, unaffected, suggesting that only an early, fast component of the AHP was Ca(++)-dependent. Unlike other central neurons that exhibit pacemaker activity, therefore, SCN neurons do not display a pronounced, long-lasting Ca(++)-dependent AHP. Extracellular Ba++ and intracellular Cs+ both revealed slow depolarizing potentials evoked either by depolarizing current injection, or by repolarization following large hyperpolarizations. They had different effects on the shape of spikes and the AHPs that followed them, however. Cs+, which blocks almost all K+ channels, dramatically reduced resting potential, greatly increased spike duration (to tens of milliseconds), and blocked AHPs completely. In contrast, Ba++ had little effect on resting potential and produced only a small increase in spike duration, depressing an early Ca(++)-dependent component and a later Ca(++)-independent component of the AHP. The relatively weak pacemaker activity of SCN neurons appears to involve voltage-dependent activation of at least one slowly inactivating inward current, which brings the cells to firing threshold and maintains tonic firing; both Ca(++)-dependent and Ca(++)-independent K+ channels, which repolarize cells after spikes and maintain interspike intervals; and Ca++ channels, which contribute to activation of Ca(++)-activated K+ currents and may also contribute to slow depolarizing potentials. In the absence of powerful synaptic inputs, SCN neurons express a pacemaker activity that is sufficient to maintain an impressively regular firing pattern. Slow, repetitive activation of optic input, however, increases local circuit activity to such an extent that the normal pacemaker potentials are overridden and firing patterns are altered. Since SCN neurons are very small and have large input resistances, they are particularly susceptible to synaptic input.  相似文献   

19.
Ca(2+) mediates the functional coupling between L-type Ca(2+) channel (LTCC) and sarcoplasmic reticulum (SR) Ca(2+) release channel (ryanodine receptor, RyR), participating in key pathophysiological processes. This crosstalk manifests as the orthograde Ca(2+)-induced Ca(2+)-release (CICR) mechanism triggered by Ca(2+) influx, but also as the retrograde Ca(2+)-dependent inactivation (CDI) of LTCC, which depends on both Ca(2+) permeating through the LTCC itself and on SR Ca(2+) release through the RyR. This latter effect has been suggested to rely on local rather than global Ca(2+) signaling, which might parallel the nanodomain control of CDI carried out through calmodulin (CaM). Analyzing the CICR in catecholaminergic polymorphic ventricular tachycardia (CPVT) mice as a model of RyR-generated Ca(2+) leak, we evidence here that increased occurrence of the discrete local SR Ca(2+) releases through the RyRs (Ca(2+) sparks) cause a depolarizing shift in activation and a hyperpolarizing shift in isochronic inactivation of cardiac LTCC current resulting in the reduction of window current. Both increasing fast [Ca(2+)](i) buffer capacity or depleting SR Ca(2+) store blunted these changes, which could be reproduced in WT cells by RyRCa(2+) leak induced with Ryanodol and CaM inhibition.Our results unveiled a new paradigm for CaM-dependent effect on LTCC gating and further the nanodomain Ca(2+) control of LTCC, emphasizing the importance of spatio-temporal relationships between Ca(2+) signals and CaM function.  相似文献   

20.
Large-conductance voltage- and Ca(2+)-dependent K(+) (BK, also known as MaxiK) channels are homo-tetrameric proteins with a broad expression pattern that potently regulate cellular excitability and Ca(2+) homeostasis. Their activation results from the complex synergy between the transmembrane voltage sensors and a large (>300 kDa) C-terminal, cytoplasmic complex (the "gating ring"), which confers sensitivity to intracellular Ca(2+) and other ligands. However, the molecular and biophysical operation of the gating ring remains unclear. We have used spectroscopic and particle-scale optical approaches to probe the metal-sensing properties of the human BK gating ring under physiologically relevant conditions. This functional molecular sensor undergoes Ca(2+)- and Mg(2+)-dependent conformational changes at physiologically relevant concentrations, detected by time-resolved and steady-state fluorescence spectroscopy. The lack of detectable Ba(2+)-evoked structural changes defined the metal selectivity of the gating ring. Neutralization of a high-affinity Ca(2+)-binding site (the "calcium bowl") reduced the Ca(2+) and abolished the Mg(2+) dependence of structural rearrangements. In congruence with electrophysiological investigations, these findings provide biochemical evidence that the gating ring possesses an additional high-affinity Ca(2+)-binding site and that Mg(2+) can bind to the calcium bowl with less affinity than Ca(2+). Dynamic light scattering analysis revealed a reversible Ca(2+)-dependent decrease of the hydrodynamic radius of the gating ring, consistent with a more compact overall shape. These structural changes, resolved under physiologically relevant conditions, likely represent the molecular transitions that initiate the ligand-induced activation of the human BK channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号