首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3′-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3′-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a ‘molecular tuning’ effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator™ DNA polymerase, we demonstrate that these 3′-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3′-O-amino-TTP and 3′-O-azidomethyl-TTP. Lightning Terminators™ show maximum incorporation rates (kpol) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (kpol/KD) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in kpol by >1000-fold over TTP misincorporation. These studies highlight the importance of structure–function relationships of modified nucleotides in dictating polymerase performance.  相似文献   

2.
Next-generation sequencing (NGS) technologies recently developed are now used for study of genomes from various organisms. Sequencing-by-synthesis (SBS) is a key strategy in the NGS. The SBS uses nucleotides so-called dual-modified reversible terminators (DRTs) in which bases are labeled with fluorophores and 3′-OH is protected with a reversibly cleavable chemical group, respectively. In this study, we examined the possibility of performing SBS with mono-modified reversible terminators (MRTs), in which the reversible blocking group on the 3′-OH plays a dual role as a fluorescent signal report as well as a chemical protection. We studied cyclic reversible termination by using two MRTs (dA and dT), wherein the modifications were two different fluorophores and cleavable to regenerate a free 3′-OH. We here demonstrated that SBS could be achieved with incorporation of MRTs by a DNA polymerase and correct base-calls based on the two different colors from the fluorophores.  相似文献   

3.
Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators enabling array-based DNA sequencing by synthesis (SBS) approaches. Herein, we describe the synthesis of a new family of 3'-OH unprotected cleavable fluorescent 2'-deoxynucleotides and their evaluation as reversible terminators for high-throughput DNA SBS strategies. In this first version, all four modified nucleotides bearing a cleavable disulfide Alexa Fluor(R) 594 dye were assayed for their ability to act as a reversible stop for the incorporation of the next labeled base. Their use in SBS leaded to a signal-no signal output after successive addition of each labeled nucleotide during the sequencing process (binary read-out). Solid-phase immobilized synthetic DNA target sequences were used to optimize the method that has been applied to DNA polymerized colonies or clusters obtained by in situ solid-phase amplification of fragments of genomic DNA templates.  相似文献   

4.
The Human Genome Project has facilitated the sequencing of many species, yet the current Sanger method is too expensive, labor intensive and time consuming to accomplish medical resequencing of human genomes en masse. Of the ‘next-generation’ technologies, cyclic reversible termination (CRT) is a promising method with the goal of producing accurate sequence information at a fraction of the cost and effort. The foundation of this approach is the reversible terminator (RT), its chemical and biological properties of which directly impact the performance of the sequencing technology. Here, we have discovered a novel paradigm in RT chemistry, the attachment of a photocleavable, 2-nitrobenzyl group to the N6-position of 2′-deoxyadenosine triphosphate (dATP), which, upon incorporation, terminates DNA synthesis. The 3′-OH group of the N6-(2-nitrobenzyl)-dATP remains unblocked, providing favorable incorporation and termination properties for several commercially available DNA polymerases while maintaining good discrimination against mismatch incorporations. Upon removal of the 2-nitrobenzyl group with UV light, the natural nucleotide is restored without molecular scarring. A five-base experiment, illustrating the exquisite, stepwise addition through a homopolymer repeat, demonstrates the applicability of the N6-(2-nitrobenzyl)-dATP as an ideal RT for CRT sequencing.  相似文献   

5.
Eight 3'-modified-dNTPs were synthesized and tested in two different DNA template assays for incorporation activity. From this enzymatic screen, two 3'-O-methyl-dNTPs were shown to terminate DNA syntheses mediated by a number of polymerases and may be used as alternative terminators in Sanger sequencing. 3'-O-(2-Nitrobenzyl)-dATP is a UV sensitive nucleotide and was shown to be incorporated by several thermostable DNA polymerases. Base specific termination and efficient photolytic removal of the 3'-protecting group was demonstrated. Following deprotection, DNA synthesis was reinitiated by the incorporation of natural nucleotides into DNA. The identification of this labile terminator and the demonstration of a one cycle stop-start DNA synthesis are initial steps in the development of a novel sequencing strategy.  相似文献   

6.
7.
8.
The complex terminator region of the Escherichia coli rrnB gene was analyzed by subcloning the terminators T1 and T2 and the inverted repeats IR1 and IR2 individually, or in various combinations, in a normal or inverted orientation into a terminator probe vector. The in vivo terminating efficiency was assayed by measuring the galactokinase activity encoded by the downstream galK gene. Termination efficiencies of all fragments were compared in two constructs, differing in the presence or absence of readthrough translation over the investigated terminator signal. The following main conclusions were drawn. (a) T1 and T2 are both efficient terminators in isolated forms. (b) IR1 and IR2 have some terminating effect (much lower than the proper terminators), especially in the inverted orientation. Their presence modifies the effect of the proper terminators in a quite unpredictable way, especially if these regions are translated. (c) The terminators are not symmetrical; in the inverted orientation T1 is practically inactive and T2 termination is reduced. (d) Translation radically decreases the efficiency of the terminators. (e) Several sequences in the rrnB gene, upstream of the terminator region (one in the 16S RNA and one in the 5S RNA coding region), are very efficient in vivo terminators in the inverted orientation.  相似文献   

9.
A simple primer extension method for detecting nucleotide differences is based on the substitution of mobility-shifting analogs for natural nucleotides (1). This technique can detect any single-base difference that might occur including previously unknown mutations or polymorphisms. Two technical limitations of the original procedure have now been addressed. First, switching to Thermococcus litoralis DNA polymerase has eliminated variability believed to be due to the addition of an extra, non-templated base to the 3' end of DNA by Taq DNA polymerase. Second, with the analogs used in the original study, the mobility shift induced by a single base change can usually be resolved only in DNA segments 200 nt or smaller. This size limitation has been overcome by synthesizing biotinylated nucleotides with extraordinarily long linker arms (36 atom backbone). Using these new analogs and conventional sequencing gels (0.4 mm thick), mutations in the human beta-hexosaminidase alpha and CYP2D6 genes have been detected in DNA segments up to 300 nt in length. By using very thin (0.15 mm) gels, single-base polymorphisms in the human APOE gene have been detected in 500-nt segments.  相似文献   

10.
11.
All DNA sequencing methods have benefited from the development of new F667Y versions of Taq DNA polymerase. However, terminator chemistry methods show less uniform peak height patterns when compared to primer chemistry profiles suggesting that the dyes and/or their linker arms affect enzyme selectivity. We have measured elementary nucleotide rate and binding constants for representative rhodamine- and fluorescein-labeled terminators to determine how they interact with F667 versions of Taq Pol I. We have also developed a rapid gel-based selectivity assay that can be used to screen and to quantify dye-enzyme interactions with F667Y versions of the enzyme. Our results show that 6-TAMRA-ddTTP behaves like unlabeled ddTTP, while 6-FAM-ddTTP shows a 40-fold reduction in the rate constant for polymerization without affecting ground-state nucleotide binding. Detailed mechanism studies indicate that both isomers of different fluorescein dyes interfere with a conformational change step which the polymerase undergoes following nucleotide binding but only when these dyes are attached to pyrimidines. When these same dyes are attached to purines by the same propargylamino linker arm, they show no effect on enzyme selectivity. These studies suggest that it may be possible to develop fluorescein terminators for thermocycle DNA sequencing methods for polymerases that do not discriminate between deoxy- and dideoxynucleotides.  相似文献   

12.
13.
A series of charge-modified, dye-labeled 2′, 3′-dideoxynucleoside-5′-triphosphates have been synthesized and evaluated as reagents for dye-terminator DNA sequencing. Unlike the commonly used dye-labeled terminators, these terminators possess a net positive charge and migrate in the opposite direction to dye-labeled Sanger fragments during electrophoresis. Post-sequencing reaction purification is not required to remove unreacted nucleotide or associated breakdown products prior to electrophoresis. Thus, DNA sequencing reaction mixtures can be loaded directly onto a separating medium such as a sequencing gel. The charge-modified nucleotides have also been shown to be more efficiently incorporated by a number of DNA polymerases than regular dye-labeled dideoxynucleotide terminators or indeed normal dideoxynucleoside-5′-triphosphates.  相似文献   

14.
Dipivaloyl-5-carboxyfluorescein N-hydroxysuccinimidyl ester 1 and 5-propargylamino-2',3'-dideoxyuridine triphosphate 5 were modified with maleimide, haloacetamide, and sulfhydryl reactive functional groups to participate in cross-conjugation reactions via sulfide bonds to generate fluorescently labeled, thioether cross-conjugated terminators 10 and 11. Their DNA sequencing potential was compared with an amide cross-conjugated terminator 13, synthesized by directly coupling 5-carboxyfluorescein NHS ester with 18-ddUTP 9. These terminators (10, 11, and 13) in combination with the Thermo Sequenase II DNA polymerase, in thermal cycle sequencing experiments, revealed that the thioether cross-conjugated terminator 10 and amide cross-conjugated terminator 13 served as good terminating substrates, generating satisfactory single-color gel images and electropherograms, while the other thioether cross-conjugated and maleimide derived one 11 underwent unexpected pH and temperature induced decomposition without showing fluorescent signatures for incorporation.  相似文献   

15.
16.
Transcriptional terminators in the caa-cal operon and cai gene   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

17.
A new and promising sequencing technology called sequencing-by-synthesis (SBS) enables fast determination of DNA sequences. 2'-Deoxynucleotides containing the (2-cyanoethoxy)methyl (CEM) group at the 3'-O-position are potential reversible terminators for the SBS technology. Herein we describe the synthesis, the incorporation by several polymerases, and the cleavage of this 3'-O-blocking group using 3'-O-CEM-thymidinyl-5'-O-triphosphate 7 as an example.  相似文献   

18.
19.
(S(C5'), R(P)) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号