首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
APOBEC3G (hA3G) is a host inhibitor for human immunodeficiency virus, type 1 (HIV-1). However, HIV-1 Vif binds hA3G and induces its degradation. We have established a screening system to discover inhibitors that protect hA3G from Vif-mediated degradation. Through screening, compounds IMB-26 and IMB-35 were identified to be specific inhibitors for the degradation of hA3G by Vif. The inhibitors suppressed HIV-1 replication in hA3G-containing cells but not in those without hA3G. The anti-HIV effect correlated with the endogenous hA3G level. HIV-1 particles from hA3G(+) cells treated with IMB-26/35 contained a hA3G level higher than that from those without IMB-26/35 treatment and showed decreased infectivity. IMB-26/35 bound directly to the hA3G protein, suppressed Vif/hA3G interaction, and therefore protected hA3G from Vif-mediated degradation. The compounds were safe with an anti-HIV therapeutic index >200 in vitro. LD50 of IMB-26 in mice was >1000 mg/kg (intraperitoneally). Therefore, IMB-26 and IMB-35 are novel anti-HIV leads working through specific stabilization of hA3G.  相似文献   

2.
Interaction between the HIV-1 Vif protein and the cellular host APOBEC3G protein is a promising target for inhibition of HIV-1 replication. Considering that human cells are a very complicated environment for the study of protein interactions, the goal of this study was to check whether fission yeast could be used as a model cell for studying the Vif-APOBEC3G interaction. Vif and APOBEC3G were expressed in fusion with GFP protein in the S. pombe SP223 strain. Subcellular localizations of Vif and APOBEC3G were observed with fluorescent microscopy. Codon optimization was used to over express the Vif protein in S. pombe cells. The degradation of APOBEC3G mediated by Vif was tested through expressing Vif and GFP-APOBEC3G proteins in the same cell. Western Blot analysis was used to measure the corresponding protein levels under different experimental conditions. The results showed that the Vif protein was predominantly localized in the nucleus of S.pombe cells, APOBEC3G was localized in the cytoplasm and concentrated at punctate bodies that were often in close proximity to the nucleus but were not necessarily restricted from other regions in the cytoplasm. Vif protein expression levels were increased significantly by using codon optimization and APOBEC3G was degraded when Vif was over-expressed in the same S. pombe cells. These results indicate that fission yeast is a good model for studying the interaction between the Vif and APOBEC3G proteins.  相似文献   

3.
Antiretroviral cytidine deaminase APOBEC3G, which is abundantly expressed in peripheral blood lymphocytes and macrophages, strongly protects these cells against HIV-1 infection. The HIV-1 Vif protein overcomes this antiviral effect by enhancing proteasome-mediated APOBEC3G degradation and is key for maintaining viral infectivity. The 579-bp-long vif gene displays high genetic diversity among HIV-1 subtypes. Therefore, it is intriguing to address whether Vif proteins derived from different subtypes differ in their viral defense activity against APOBEC3G. Expression plasmids encoding Vif proteins derived from subtypes A, B, C, CRF01_AE, and CRF02_AG isolates were created, and their anti-APOBEC3G activities were compared. Viruses produced from cells expressing APOBEC3G and Vif proteins from different subtypes showed relatively different viral infectivities. Notably, subtype C-derived Vif proteins tested had the highest activity against APOBEC3G that was ascribed to its increased binding activity, for which the N-terminal domain of the Vif protein sequences was responsible. These results suggest that the biological differences of Vif proteins belonging to different subtypes might affect viral fitness and quasispecies in vivo.  相似文献   

4.
5.
Approximately half of all human genes undergo alternative mRNA splicing. This process often yields homologous gene products exhibiting diverse functions. Alternative splicing of APOBEC3G (A3G) and APOBEC3F (A3F), the major host resistance factors targeted by the HIV-1 protein Vif, has not been explored. We investigated the effects of alternative splicing on A3G/A3F gene expression and antiviral activity. Three alternatively spliced A3G mRNAs and two alternatively spliced A3F mRNAs were detected in peripheral blood mononuclear cells in each of 10 uninfected, healthy donors. Expression of these splice variants was altered in different cell subsets and in response to cellular stimulation. Alternatively spliced A3G variants were insensitive to degradation by Vif but displayed no antiviral activity against HIV-1. Conversely, alternative splicing of A3F produced a 37-kDa variant lacking exon 2 (A3FΔ2) that was prominently expressed in macrophages and monocytes and was resistant to Vif-mediated degradation. Alternative splicing also produced a 24-kDa variant of A3F lacking exons 2–4 (A3FΔ2–4) that was highly sensitive to Vif. Both A3FΔ2 and A3FΔ2–4 displayed reduced cytidine deaminase activity and moderate antiviral activity. These alternatively spliced A3F gene products, particularly A3FΔ2, were incorporated into HIV virions, albeit at levels less than wild-type A3F. Thus, alternative splicing of A3F mRNA generates truncated antiviral proteins that differ sharply in their sensitivity to Vif.  相似文献   

6.
载脂蛋白B mRNA编辑催化多肽样(apolipoprotein B mRNA-editing catalytic polypeptide-like,APOBEC)蛋白是一组胞嘧啶脱氨基酶,具有天然的抗病毒活性,对多种病毒具有抑制作用,特别是逆转录病毒. APOBEC3蛋白能够抑制人类免疫缺陷病毒(HIV-1)的感染,其中APOBEC3G和APOBEC3F的作用最强. APOBEC3G能够通过胞嘧啶脱氨基作用和非胞嘧啶脱氨基作用抑制病毒感染. HIV-1病毒感染因子(Vif) 蛋白主要经泛素-蛋白酶体途径介导APOBEC3G降解,从而拮抗其抗病毒作用. APOBEC3G和Vif之间相互作用的研究对于寻求新的抗HIV治疗靶点具有重要意义.  相似文献   

7.
Human APOBEC3G exhibits anti‐human immunodeficiency virus‐1 (HIV‐1) activity by deaminating cytidines of the minus strand of HIV‐1. Here, we report a solution structure of the C‐terminal deaminase domain of wild‐type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real‐time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3′ → 5′ order. Virus infectivity factor (Vif) of HIV‐1 counteracts the anti‐HIV‐1 activity of APOBEC3G. The structure of the N‐terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species‐specific sensitivity of APOBEC3G to Vif action.  相似文献   

8.
HIV-1 Vif(viral infectivity factor)蛋白是由保守的vif基因编码的碱性蛋白质,是HIV-1病毒的辅助调节蛋白之一.研究表明Vif蛋白具有调节病毒侵入、组装、出芽和成熟等功能.此外,Vif蛋白能够特异性地与体内抗病毒因子APOBEC3G相互作用,增强病毒的感染性.因此,针对HIV-1Vif蛋白进行抑制剂设计已经成为抗HIV药物研究的热点之一.本文对HIV-1Vif蛋白的结构与功能研究的最新进展进行了综述.  相似文献   

9.
10.
11.
The cytidine deaminase hAPOBEC3G is an antiviral human factor that counteracts the replication of HIV-1 in absence of the Vif protein. hAPOBEC3G is packaged into virus particles and lethally hypermutates HIV-1. In this work, we examine the mechanisms governing hAPOBEC3G packaging. By GST pull-down and co-immunoprecipitation assays, we show that hAPOBEC3G binds to HIV-1 Pr55 Gag and its NC domain and to the RT and IN domains contained in Pr160 Gag-Pol. We demonstrate that the expression of HIV-1 Gag is sufficient to induce the packaging of hAPOBEC3G into Gag particles. Gag-Pol polypeptides containing RT and IN domains, as well as HIV-1 genomic RNA, seem not to be necessary for hAPOBEC3G packaging. Lastly, we show that hAPOBEC3G and its murine ortholog are packaged into HIV-1 and MLV Gag particles. We conclude that the Gag polypeptides from distant retroviruses have conserved domains allowing the packaging of the host antiviral factor APOBEC3G.  相似文献   

12.
The main function of Vif is to limit the antiviral activity of APOBEC3G by counteracting its packaging into HIV-1 virions. In this work, we examine the possible functional interactions between Vif, APOBEC3G, and two Src family tyrosine kinases, Fyn and Hck, present in T lymphocytes and in monocyte-macrophages, respectively. By GST pull-down, we show that the SH3 domains of Fyn and Hck, and the corresponding full-length proteins bind Vif of HIV-1. One consequence of this interaction is a reduction in their catalytic activity. Interestingly, we also observed that APOBEC3G can be phosphorylated on tyrosine in the presence of Fyn or Hck, suggesting that both kinases may regulate APOBEC3G function. Accordingly, we demonstrate that in the presence of Fyn or Hck and in the absence of Vif, the overall level of APOBEC3G incorporated into HIV-1 particles is decreased, whereas the level of encapsidation of its phosphorylated form is significantly enhanced.  相似文献   

13.
14.
目的 建立艾滋病( AIDS) 患者载脂蛋白B mRNA 编辑酶催化多肽样蛋白3G( APOBEC3G) 的真核表达体系。方法 采用反转录-聚合酶链反应( RT-PCR) 技术从AIDS 患者外周血单个核细胞( PBMC) 中获取APOBEC3G 基因编码区, 将其克隆到pMD18-T载体上, 测序验证正确后再将其转接入真核表达载体pEGFP-N1 中, 然后将重组质粒pEGFP-N1-A3G 转染HEK293T细胞, 分别用RT-PCR 法和蛋白印迹法( Western 印迹法) 验证APOBEC3G 在mRNA 和蛋白水平的表达。结果 从AIDS 患者体内克隆的APOBEC3G 基因编码区长度为1 154 bp, 测序结果与GenBank 中APOBEC3G 参考序列( NM021822) 比对发现存在2 处差异, 分别位于mRNA 第588 位和746 位碱基处。重组质粒pEGFP-N1-A3G转染HEK293T 细胞, 在荧光显微镜下观察到融合蛋白A3G-EGFP的表达, RT-PCR 法和Western blot 法分别验证了蛋白在mRNA 和蛋白水平的表达。结论 成功构建了AIDS 患者APOBEC3G 蛋白的真核表达体系, 为进一步研究APOBEC3G 在HIV-1 感染中的作用奠定了基础。  相似文献   

15.
He Z  Zhang W  Chen G  Xu R  Yu XF 《Journal of molecular biology》2008,381(4):1000-1011
Apolipoprotein B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G, or A3G) and related cytidine deaminases such as apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F) are potent inhibitors of retroviruses. Formation of infectious human immunodeficiency virus (HIV)-1 requires suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through a common mechanism by recruiting Cullin5, ElonginB, and ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. Domains in Vif that mediate APOBEC3 recognition have not been fully characterized. In the present study, we identified a VxIPLx4-5LxΦx2YWxL motif in HIV-1 Vif, which is required for efficient interaction between Vif and A3G, Vif-mediated A3G degradation and virion exclusion, and functional suppression of the A3G antiviral activity. Amino acids 52 to 72 of HIV-1 Vif (including the VxIPLx4-5LxΦx2YWxL motif) alone could mediate interaction with A3G, and this interaction was abolished by mutations of two hydrophobic amino acids in this region. We have also observed that a Vif mutant was ineffective against A3G, yet it retained the ability to interact with Cullin5-E3 ubiquitin complex and A3G, suggesting that interaction with A3G is necessary but not sufficient to inhibit its antiviral function. Unlike the previously identified motif of HIV-1 Vif amino acids 40 to 44, which is only important for A3G suppression, the VxIPLx4-5LxΦx2YWxL motif is also required for efficient A3F interaction and suppression. On the other hand, another motif, TGERxW, of HIV-1 Vif amino acids 74 to 79 was found to be mainly important for A3F interaction and inhibition. Both the VxIPLx4-5LxΦx2YWxL and TGERxW motifs are highly conserved among HIV-1, HIV-2, and various simian immunodeficiency virus Vif proteins. Our data suggest that primate lentiviral Vif molecules recognize their autologous APOBEC3 proteins through conserved structural features that represent attractive targets for the development of novel inhibitors.  相似文献   

16.
APOBEC3G (A3G) is a cellular cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA and by deamination-independent mechanisms. HIV-1 Vif binds to A3G, resulting in its degradation via the 26 S proteasome. Therefore, this interaction represents a potential therapeutic target. To identify compounds that inhibit interaction between A3G and HIV-1 Vif in a high throughput format, we developed a homogeneous time-resolved fluorescence resonance energy transfer assay. A 307,520 compound library from the NIH Molecular Libraries Small Molecule Repository was screened. Secondary screens to evaluate dose-response performance and off-target effects, cell-based assays to identify compounds that attenuate Vif-dependent degradation of A3G, and assays testing antiviral activity in peripheral blood mononuclear cells and T cells were employed. One compound, N.41, showed potent antiviral activity in A3G(+) but not in A3G(−) T cells and had an IC50 as low as 8.4 μm and a TC50 of >100 μm when tested against HIV-1Ba-L replication in peripheral blood mononuclear cells. N.41 inhibited the Vif-A3G interaction and increased cellular A3G levels and incorporation of A3G into virions, thereby attenuating virus infectivity in a Vif-dependent manner. N.41 activity was also species- and Vif-dependent. Preliminary structure-activity relationship studies suggest that a hydroxyl moiety located at a phenylamino group is critical for N.41 anti-HIV activity and identified N.41 analogs with better potency (IC50 as low as 4.2 μm). These findings identify a new lead compound that attenuates HIV replication by liberating A3G from Vif regulation and increasing its innate antiviral activity.  相似文献   

17.
Certain ritonavir resistance mutations impair HIV infectivity through incomplete Gag processing by the mutant viral protease. Analysis of the mutant virus phenotype indicates that accumulation of capsid-spacer peptide 1 precursor protein in virus particles impairs HIV infectivity and that the protease mutant virus is arrested during the early postentry stage of HIV infection before proviral DNA synthesis. However, activation of the target cell can rescue this defect, implying that specific host factors expressed in activated cells can compensate for the defect in ritonavir-resistant HIV. This ability to rescue impaired HIV replication presented a unique opportunity to identify host factors involved in postentry HIV replication, and we designed a functional genetic screen so that expression of a given host factor extracted from activated T cells would lead directly to its discovery by rescuing mutant virus replication in nonactivated T cells. We identified the cellular heat shock protein 90 kDa α (cytosolic), class B member 1 (HSP90AB1) as a host factor that can rescue impaired replication of ritonavir-resistant HIV. Moreover, we show that pharmacologic inhibition of HSP90AB1 with 17-(allylamino)-17-demethoxygeldanamycin (tanespimycin) has potent in vitro anti-HIV activity and that ritonavir-resistant HIV is hypersensitive to the drug. These results suggest a possible role for HSP90AB1 in postentry HIV replication and may provide an attractive target for therapeutic intervention.  相似文献   

18.
19.
20.
In 2014, two novel and promising benzimidazole-based APOBEC3G stabilizers MM-1 and MM-2 (MMs) were uncovered with an elusive mechanism of action. Vif-APOBEC3G axis has been recognized as a novel therapeutic target for anti HIV-1 drug development. The unexplored mechanism of MMs hindered their further development into lead compounds. To recognize their underlying mechanism we adopted an exhaustive in silico workflow by which we tested their ability to interrupt Vif complex network formation. The preliminary outcome guided us to a high likelihood of MMs interaction within Elongin C binding site, which in turn, perturbs Vif/Elongin C binding and ultimately undermines Vif action. To validate our estimation, we synthesized only MM-1 as a model to complement our study by in vitro assay for a real-time understanding. An immunoprecipitation experiment confirmed the capacity of MM-1 to interrupt Vif/Elongin C interaction. This is an integral study that lies at the interface between theoretical and experimental approaches showing the potential of molecular modelling to address issues related to drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号