首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background Altered HLA class I cell surface expression is one of the major mechanisms by which tumor cells escape from T lymphocytes. Immunohistochemistry-defined phenotypes of lost HLA class I expression have been described in human solid tumors, nut less information is available on melanoma cell lines. Objectives To describe the frequency and distribution of different types of HLA class I antigen alterations in 91 melanoma cell lines from the European Searchable Tumour Cell and Databank (ESTDAB). Methods The HLA class I expression was assessed by flow cytometry and HLA genotyping. Results We found various types of HLA class I cell surface alterations in about 67% of the melanoma cell lines. These alterations range from total to selective HLA class I loss due to loss of heterozygosity (LOH), haplotype loss, β2-microglobulin gene mutation, and/or total or selective down-regulation of HLA class I molecules. The most frequently observed phenotype is down-regulation of HLA-B locus that was reversible after treatment with IFN -γ. Conclusions In general, HLA class I alterations in the majority of the cells analyzed were of regulatory nature and could be restored by IFN-γ. Analysis of the frequency of distinct HLA class I altered phenotypes in these melanoma cell lines revealed specific differences compared to other types of tumors. Rosa Méndez and Teresa Rodríguez have equally contributed to this work and both should be considered as first authors.  相似文献   

2.
3.
Antigen-presenting cells are crucial for the induction of an antigen-specific antitumoral immune response. Deteriorations in the expression pattern of cell surface molecules important for the presentation of antigens might therefore be indicative of an impaired immune response status in cancer patients. In the present study we investigated the expression of MHC class I and class II molecules, of the costimulatory molecules CD80/B7-1 and CD86/B7-2, of the adhesion molecule CD11c, and of the marker of activation CD71 on CD14+ peripheral blood monocytes (PBMs) from 144 melanoma patients in different stages of disease and 43 healthy controls, by flow cytometric analysis. We found a decreased expression of HLA-DR (p<0.0005), HLA-DQ (p=0.006), HLA-DP (p<0.0005), and CD86/B7-2 (p=0.001) on PBMs from melanoma patients compared with healthy controls, whereas no significant difference could be detected in the expression of HLA class I antigens and CD80/B7-1. This down-regulated expression was associated with disease progression. In contrast, CD71 expression was stage-dependently increased on PBMs from melanoma patients compared with healthy controls (p=0.024). No correlation was found between the PBM surface expression pattern and age, gender, tumor load, and current mode of therapy of the patients. The observed down-regulation of HLA class II and CD86/B7-2 on melanoma patients PBMs might reflect an ineffective antigen-presenting function contributing to an impaired antigen-specific immune response in these patients.Both authors S. Ugurel and D. Uhlig contributed equally to this work  相似文献   

4.
The characterization of peptides bound to human leukocyte antigen (HLA) class I is of fundamental importance for understanding CD8+ T cell‐driven immunological processes and for the development of immunomodulatory therapeutic strategies. However, until now, the mass spectrometric analysis of HLA‐bound peptides has typically required billions of cells, still resulting in relatively few high‐confidence peptide identifications. Capitalizing on the recent developments in mass spectrometry and bioinformatics, we have implemented a methodology for the efficient recovery of acid‐eluted HLA peptides after purification with the pan‐reactive antibody W6/32 and have identified a total of 27 862 unique peptides with high confidence (1% false discovery rate) from five human cancer cell lines. More than 93% of the identified peptides were eight to 11 amino acids in length and contained signatures that were in excellent agreement with published HLA binding motifs. Furthermore, by purifying soluble HLA class I complexes (sHLA) from sera of melanoma patients, up to 972 high‐confidence peptides could be identified, including melanoma‐associated antigens already described in the literature. Knowledge of the HLA class I peptidome should facilitate multiplex tetramer technology‐based characterization of T cells, and allow the development of patient selection, stratification and immunomodulatory therapeutic strategies.  相似文献   

5.
Our knowledge of the mechanisms underlying tumor-specific immune response and tumor escape has considerably increased. HLA class I antigen defects remain an important tumor escape mechanism since they influence the interactions between tumor cells and specific T and NK cells in the course of malignant disease. We have studied here HLA class I expression in six subcutaneous metastases obtained from a melanoma patient immunized with an autologous melanoma cell vaccine (M-VAX). We report in this paper that HLA class I antigen expression on these metastatic lesions strongly correlated with the course of the disease. The three metastases that were partially regressing at the time of their excision showed a strong HLA class I expression, whereas the progressing ones showed a very weak or negative staining with most of the anti-HLA class I mAbs used. Real-time quantitative PCR of the samples obtained from microdissected tumor tissue revealed a significant difference in the mRNA levels of HLA-ABC heavy chain and beta2m between the two types of metastases, i.e., lower levels in progressing metastases and high levels in regressing ones, confirming the immunohistological findings. This is, to our knowledge, the first report where the clinical outcome of different HLA class I positive and negative melanoma metastases can be clearly correlated with the regression and progression of the disease, respectively.  相似文献   

6.
Despite the potential efficacy of cancer immunotherapy in preclinical studies, it did not show yet significant positive clinical results in humans with only a small number of cancer patients demonstrating objective tumor regression. This poor clinical outcome can be explained by the generation of sophisticated tumor immune escape mechanism, in particular, abnormalities in the expression of HLA class I antigens. We have studied the expression of HLA class I antigens in ten metastatic lesions obtained from a melanoma patient undergoing immunotherapy. Five lesions were obtained after Interferon-alpha-2b treatment and five after autologous vaccination plus BCG (M-VAX). Eight metastases were regressing after immunotherapy while two were progressing. The eight regressing metastases showed high level of HLA class I expression, whereas the two progressing lesions had low levels as measured by real time PCR and immunohistological techniques. These results indicate a strong association between HLA class I expression and progression or regression of the metastatic lesions. Our data support the hypothesis that the level of HLA class I expression is an important parameter of tumor immune escape that needs to be monitored.  相似文献   

7.
Despite the significant efforts to enhance immune reactivity against malignancies the clinical effect of anti-tumor vaccines and cancer immunotherapy is still below expectations. Understanding of the possible causes of such poor clinical outcome has become very important for improvement of the existing cancer treatment modalities. In particular, the critical role of HLA class I antigens in the success of T cell based immunotherapy has led to a growing interest in investigating the expression and function of these molecules in metastatic cancer progression and, especially in response to immunotherapy. In this report, we illustrate that two types of metastatic lesions are commonly generated in response to immunotherapy according to the pattern of HLA class I expression. We found that metastatic lesions, that progress after immunotherapy have low level of HLA class I antigens, while the regressing lesions demonstrate significant upregulation of these molecules. Presumably, immunotherapy changes tumor microenvironment and creates an additional immune selection pressure on tumor cells. As a result, two subtypes of metastatic lesions arise from pre-existing malignant cells: (a) regressors, with upregulated HLA class I expression after therapy, and (b) progressors with resistance to immunotherapy and with low level of HLA class I. Tumor cells with reversible defects (soft lesions) respond to therapy by upregulation of HLA class I expression and regress, while tumor cells with structural irreversible defects (hard lesions) demonstrate resistance to immunostimulation, fail to upregulate HLA class I antigens and eventually progress. These two types of metastases appear independently of type of the immunotherapy used, either non-specific immunomodulators (cytokines or BCG) or autologous tumor vaccination. Similarly, we also detected two types of metastatic colonies in a mouse fibrosarcoma model after in vitro treatment with IFN-gamma. One type of metastases characterized by upregulation of all MHC class I antigens and another type with partial IFN-gamma resistance, namely with lack of expression of L(d)-MHC class I molecule. Our observations may shed new light on the understanding of the mechanisms of tumor escape and might have implications for improvement of the efficacy of cancer immunotherapy.  相似文献   

8.
Purpose To determine the clinical impact of human leukocyte antigen (HLA) class I expression in irradiated and non-irradiated rectal carcinomas. Experimental design Tumor samples in tissue micro array format were collected from 1,135 patients. HLA class I expression was assessed after immunohistochemical staining with two antibodies (HCA2 and HC10). Results Tumors were split into two groups: (1) tumors with >50% of tumor cells expressing HLA class I (high) and (2) tumors with ≤50% of tumor cells expressing HLA class I (low). No difference in distribution or prognosis of HLA class I expression was found between irradiated and non-irradiated patients. Patients with low expression of HLA class I (15% of all patients) showed an independent significantly worse prognosis with regard to overall survival and disease-free survival. HLA class I expression had no effect on cancer-specific survival or recurrence-free survival. Conclusions Down-regulation of HLA class I in rectal cancer is associated with poor prognosis. In contrast to our results, previous reports on HLA class I expression in colorectal cancer described a large population of patients with HLA class I negative tumors, having a good prognosis. This difference might be explained by the fact that a large proportion of HLA negative colon tumors are microsatellite instable (MSI). MSI tumors are associated with a better prognosis than microsatellite stable (MSS). As rectal tumors are mainly MSS, our results suggest that it is both, oncogenic pathway and HLA class I expression, that dictates patient’s prognosis in colorectal cancer. Therefore, to prevent confounding in future prognostic analysis on the impact of HLA expression in colorectal tumors, separate analysis of MSI and MSS tumors should be performed. Frank M. Speetjens and Elza C. de Bruin contributed equally to this work. Cornelis J.H. van de Velde is the Chairperson of the Total Mesorectal Excision Trial.  相似文献   

9.
Malignant transformation of cells is frequently associated with abnormalities in human leukocyte antigen (HLA) expression. MHC class I loss or down-regulation in cancer cells is a major immune escape route used by a large variety of human tumours to evade antitumour immune responses mediated by cytotoxic T lymphocytes. The goal of our study was to explore HLA genotyping and phenotyping in a variety of melanoma tumour cell lines. A total of 91 melanoma cell lines were characterised for HLA class I and II genotype. In addition, 61 out of the 91 cell lines were also analysed for HLA class I and II cell surface molecule expression by flow cytometry. Unexpectedly, we found that 19.7% of the melanoma cell lines were homozygous for HLA class I genotypes, sometimes associated with HLA class II homozygosity (8.79%) and sometimes not (10.98%). The frequency of homozygosity was significantly higher compared with the control groups (1.6%). To identify the reasons underlying the high frequency of HLA homozygosity we searched for genomic deletions using eight pairs of highly polymorphic microsatellite markers covering the entire extended HLA complex on the short arm of chromosome 6. Our results were compatible with hemizygous deletions and suggest that loss of heterozygosity on chromosome arm 6p is a common feature in melanoma cell lines. In fact, although autologous normal DNA from the patients was not available and could not be tested, the retention in some cases of heterozygosity for a number of microsatellite markers would indicate a hemizygous deletion. In the rest of the cases, markers at 6p and 6q showed a single allele pattern indicating the probable loss of part or the whole of chromosome 6. These results led us to conclude that loss of heterozygosity in chromosome 6 is nonrandom and is possibly an immunologically relevant event in human malignant melanoma. Other well-established altered HLA class I phenotypes were also detected by flow cytometry that correspond to HLA class I total loss and HLA-ABC and/or specific HLA-B locus down-regulation.  相似文献   

10.
Knowledge of the interactions between MHC-unrestricted cytotoxic effector cells and solid tumour cells is essential for introducing more effective NK cell-based immunotherapy protocols into clinical practise. Here, to begin to obtain an overview of the possible universe of molecules that could be involved in the interactions between immune effector cells and melanoma, we analyse the surface expression of adhesion and costimulatory molecules and of ligands for NK-activating receptors on a large panel of cell lines from the “European Searchable Tumour Cell Line and Data Bank” (ESTDAB, http://www.ebi.ac.uk/ipd/estdab/) and discuss their potential role in the immune response against this tumour. We show that most melanoma cell lines express not only adhesion molecules that are likely to favour their interaction with cells of the immune system, but also their interaction with endothelial cells potentially increasing their invasiveness and metastatic capacity. A high percentage of melanoma cell lines also express ligands for the NK-activating receptor NKG2D; whereas, the majority express MICA/B molecules, ULBP expression, however, was rarely found. In addition to these molecules, we also found that CD155 (poliovirus receptor, PVR) is expressed by the majority of melanoma cell lines, whereas CD112 (Nectin-2) expression was rare. These molecules are DNAM-1 ligands, a costimulatory molecule involved in NK cell-mediated cytotoxicity and cytokine production that also mediates costimulatory signals for triggering naïve T cell differentiation. The phenotypical characterisation of adhesion molecules and ligands for receptors involved in cell cytotoxicity on a large series of melanoma cell lines will contribute to the identification of markers useful for the development of new immunotherapy strategies.  相似文献   

11.
The majority of melanoma cells express detectable levels of HLA class II proteins, and an increased threshold of cell surface class II is crucial for the stimulation of CD4+ T cells. Bryostatin-1, a protein kinase C (PKC) activator, has been considered as a potent chemotherapeutic agent in a variety of in vitro tumor models. Little is known about the role of bryostatin-1 in HLA class II Ag presentation and immune activation in malignant tumors, especially in melanoma. In this study, we show that bryostatin-1 treatment enhances CD4+ T cell recognition of melanoma cells in the context of HLA class II molecules. We also show that bryostatin-1 treatment of melanoma cells increases class II protein levels by upregulating the class II transactivator (CIITA) gene. Flow cytometry and confocal microscopic analyses revealed that bryostatin-1 treatment upregulated the expression of costimulatory molecules (CD80 and CD86) in melanoma cells, which could prolong the interaction of immune cells and tumors. Bryostatin-1 also induced cellular differentiation in melanoma cells, and reduced tumorigenic factors such as pro-cathepsins and matrix-metalloproteinase-9. These data suggest that bryostatin-1 could be used as a chemo-immunotherapeutic agent for reducing tumorigenic potential of melanoma cells while enhancing CD4+ T cell recognition to prevent tumor recurrence.  相似文献   

12.
The major subset of human blood gammadelta T lymphocytes expresses the variable-region genes Vgamma9 and Vdelta2. These cells recognize non-peptidic phosphoantigens that are present in some microbial extracts, as well as the beta(2)-microglobulin-deficient Burkitt's lymphoma Daudi. Most cytotoxic human Vgamma9/Vdelta2 T cells express inhibitory natural killer cell receptors for HLA class I that downmodulate the responses of the gammadelta T lymphocytes against HLA class I expressing cells. In this study we show that transfection of the human beta(2)-microglobulin cDNA into Daudi cells markedly inhibits the cytotoxic and proliferative responses of human Vgamma9/Vdelta2 T cells. This provides direct evidence that the "innate" specificity of human Vgamma9/Vdelta2 T-lymphocytes for Daudi cells is uncovered by the loss of beta(2)m by Daudi. However, Daudi cells that express HLA class I in association with mouse beta(2)m at the cell surface are recognized by human Vgamma9/Vdelta2 T cells close to the same degree as the parental HLA class I deficient Daudi cell line. Thus, proper conformation of the HLA class I molecules is required for binding to natural killer cell receptors. Cloning of the HLA class I A, B, and C molecules of Daudi cells and transfer of the individual HLA class I molecules of Daudi cells into the HLA class I deficient recipient cell lines.221 and C1R demonstrate that for some human gammadelta T-cell clones cytolysis can be entirely inhibited by single HLA class I alleles while for other clones single HLA class I alleles only partially inhibit cytotoxicity. Thus, most human Vgamma9/Vdelta2 T cells represent a population of killer cells that evolved like NK cells to destroy target cells that have lost expression of individual HLA class I molecules but with a specificity that is determined by the Vgamma9/Vdelta2 TCR.  相似文献   

13.
14.
Major histocompatibility complex (MHC) class II molecules have been considered as a good target molecule for use in immunotherapy, because of the high expression in some lymphoma and leukaemia cells and, also, because of their restricted expression on human cells (monocytes, dendritic, B lymphocytes, thymic epithelial cells, and some cytokine-activated cells, such as T lymphocytes). We have obtained a human IgM monoclonal antibody directed against human leukocyte antigen (HLA) class II molecules, using transgenic mice carrying human Ig genes. The antibody BH1 (IgM/κ isotype) recognises HLA-class II on the surface of tumour cells from patients suffering from haematological malignancies, such as chronic and acute lymphocytic leukaemias, non-Hodgkin lymphomas and myeloid leukaemias. Interestingly, functional studies revealed that BH1 mAb recognises and kills very efficiently tumour cells from several leukaemia patients in the presence of human serum as a source of complement. These results suggest that this human IgM monoclonal antibody against HLA-class II could be considered as a potential agent in the treatment of several malignancies. Belén Díaz, Irene Sanjuan and Susana Magadán share authorship; Francisco Gambón and áfrica González–Fernández share leadership.  相似文献   

15.
16.
17.
Major histocompatibility complex (MHC) molecules serve as peptide receptors. These peptides are derived from processed cellular or extra-cellular antigens. The MHC gene complex encodes two major classes of molecules, MHC class I and class II, whose function is to present peptides to CD8+ (cytotoxic) and CD4+ (helper) T cells, respectively. The genes encoding both classes of MHC molecules seem to originate from a common ancestral gene. One of the hallmarks of the MHC is its extensive polymorphism which displays locus and allele-specific characteristics among the various MHC class I and class II genes. Because of its central role in immunosurveillance and in various disease states, the MHC is one of the best studied genetic systems. This review addresses several aspects of MHC class I and class II gene regulation in human and in particular, the contribution to the constitutive and cytokine-induced expression of MHC class I and II genes of MHC class-specific regulatory elements and regulatory elements which apparently are shared by the promoters of MHC class I and class II genes. Received: 12 January 1998  相似文献   

18.
Previous evidence from our laboratory showed that Epstein–Barr virus–immortalized lymphoblastoid B cells undergo a prominent down-modulation of HLA-II molecule expression when injected intraperitoneally in SCID mice, while HLA-I remains almost unaffected. Since this phenomenon can alter the experimental outcome of therapeutic protocols of adoptive cell therapy, we decided to evaluate the behavior of MHC antigens in a panel of cell lines belonging to the B- and T-cell lineages, as well as in epithelial tumor cell lines. Cells were administered in mice either intraperitoneally or subcutaneously and recovered 4 days later for HLA molecule expression analysis. Collected data showed a highly heterogeneous in vivo behavior of the various cell lines, which could alternatively down-modulate, completely abrogate or maintain unchanged the expression of either MHC-I or MHC-II molecules. Moreover, the site of injection impacted differentially on these aspects. Although such phenomena still lack a comprehensive clarification, epigenetic mechanisms are likely to be involved as epigenetic drugs could partially counteract MHC down-modulation in vivo. Nonetheless, it has to be pointed out that careful attention must be paid to the assessment of therapeutic efficacy of translational protocols of adoptive immunotherapy, as modulation of MHC molecules on human target cells when transferred in a mouse environment could readily interfere with the desired and expected therapeutic effects.  相似文献   

19.
Human embryonic stem cells (hESCs) represent a promise for future strategies of tissue replacement. However, there are different issues that should be resolved before these cells can be used in cellular therapies; among others, the rejection of transplantable hESCs as a result of HLA incompatibility between donor cells and recipients. The hESCs exhibit a weak HLA class I expression on the cell surface, but today the responsible mechanisms are unknown. We have analyzed the level expression of HLA class I heavy chain, beta2-microglobulin (beta2-m), and antigen-processing machinery (APM) components (TAP1, TAP2, LMP2, LMP7, and Tapasin) using the HS293 hESC line by real-time quantitative RT-PCR. This analysis has revealed a low expression of beta2-m, HLA-B, and Tapasin, and an absence of expression of: TAP1, TAP2, LMP2, and LMP7 genes in the HS293 hESC line respect to the embryoid bodies (EBs) and the induced stem cells with IFNgamma (with significant differences, p<0.05). The lack or loss of HLA class I molecules due to the down-regulation of the APM components has been frequently found in tumors of different histology as specific mechanisms of immune-evasion. We described for the first time in this report that the hESCs shared similar mechanisms with respect to tumor cells responsible for the weak HLA class I expression on the cell surface.  相似文献   

20.
HLA class I allele types have differential impacts on the level of the pVL and outcome of HIV‐1 infection. While accumulations of CTL escape mutations at population levels have been reported, their actual impact on the level of the pVL remains unknown. In this study HLA class I types from 141 untreated, chronically HIV‐1 infected Japanese patients diagnosed from 1995–2007 were determined, and the associations between expression of individual HLA alleles and level of pVL analyzed. It was found that the Japanese population has an extremely narrow HLA distribution compared to other ethnic groups, which may facilitate accumulation of CTL escape mutations at the population level. Moreover while they uniquely lack the most protective HLA‐B27/B57, they commonly express the alleles that are protective in Caucasians (A11:10.4%, A26:11.55%, B51:8.6% and Cw14:12.7%). Cross‐sectional analyses revealed no significant associations between expression of individual alleles and the level of the pVL. The patients were then stratified by the date of HIV diagnosis and the analyses repeated. It was found that, before 2001, B51+ individuals displayed significantly lower pVL than the other patients (median: 5150 vs. 18 000 RNA copies/ml, P= 0.048); however thereafter this protective effect waned and disappeared, whereas no changes were observed for any other alleles over time. These results indicate that, at a population level, some HLA alleles have been losing their beneficial effects against HIV disease progression over time, thereby possibly posing a significant challenge for HIV vaccine development. However such detrimental effects may be limited to particular HLA class I alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号