首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetyl-CoA-carboxylase is isolated and purified to a homogeneous state from the chicken liver with alimentary lipogenesis stimulation. Under the action of nicotinic acid in vivo the specific enzyme activity is shown to decrease considerably followed by some variations in its properties. According to the results obtained during ultracentrifugation and PAAG electrophoresis nicotinic acid causes partial enzyme deaggregation with simultaneous increase of its phosphorylation. The latter is accompanied by a rise in the content of phosphate labile to alkali on acetyl-CoA-carboxylase subunits. Nicotinic acid in vivo has practically no effect on acetyl-CoA-carboxylase synthesis and decay rate. Its inhibiting action is induced by stimulation of enzyme phosphorylation.  相似文献   

2.
Sites of cAMP and ATP binding which regulate acetyl-CoA-carboxylase phosphorylation rate characterized under conditions of lipogenesis intensification and nicotinic acid action on this enzyme 1500 fold purified and containing proteinkinase activity. The acetyl-CoA-carboxylase preparation contains only one type of the cAMP binding sites which possess higher capacity under the action of nicotinic acid in vivo. A decrease of the cAMP binding under the conditions of lipogenesis intensification is induced by diminution of the cAMP binding site capacity without changing the binding constant value. It is established that [gamma-32P]ATP is incorporated in enzyme with Km value equal for two states under study. It this case the [gamma-32P]ATP incorporation rate is much higher for acetyl-CoA-carboxylase produced from chicken liver under the action of nicotinic acid.  相似文献   

3.
Nicotinic acid and nicotinamide inhibit in vitro the acetyl-CoA-carboxylase activity of partially purified enzyme from chicken liver. The incorporation of 10, 20, 50 and 100 mkmoles of nicotinic acid or nicotinamide into the incubation medium (0,9 ml) leads to the inhibition of the enzyme activity by 19, 45, 70 and 100% and by 39, 51, 60 and 78%, respectively. NADH+ and NADP+ at concentrations by one order of magnitude lower than those of nicotinic acid and nicotinamide decrease the enzyme activity in a similar manner. The constants of inhibition by the above-mentioned compounds were calculated with respect to ATP, acetyl-CoA and citrate.  相似文献   

4.
The biosynthesis of fatty acids in the chicken liver was stimulated by feeding up chickens with high-carbon products. After fasting the cAMP content and protein kinase activity in chicken fall considerably as compared to the control. After administration of nicotinic acid to chicken under experiment the content of cAMP and the protein kinase activity in the liver tissue rise to the highest extent, returning to initial values by the end of the day. The maximal increase in the cAMP content and protein kinase activity coincides in time with the maximum of the acetyl-CoA-carboxylase activity decrease. An assumption is advanced that biosynthesis of fatty acids in the liver tissue of chickens is regulated by a change in the degree of acetyl-CoA-carboxylase phosphorylation with the participation of adenylate cyclase system.  相似文献   

5.
Changes of acetyl-CoA-carboxylase (EC 6.4.1.2) activity and the NAD content in the liver tissue were studied in dynamics after excessive administration of nicotinic acid to chickens. It is established that in chickens, which were given a high-carbohydrate diet after fasting, administration of nicotinic acid at first causes a fall of the acetyl-CoA-activity in the liver tissue, followed by its gradual rise against a background of the NAD content drop and by the 24th hour its level approaches the initial values. The maxima of NAD accumulation and of the acetyl-CoA-carboxylase activity decrease coincide in time. The administration of nicotinic acid to these chickens causes both a decrease in the intensity of 2-14C acetate incorporation into free fatty acids and a drop in their content.  相似文献   

6.
Protein kinase strong-associated with acetyl-CoA-carboxylase is isolated from the liver of chicken and 300-fold purified with alimentary intensification of lipogenesis and under the effect of nicotinic acid against this background. The obtained enzymes are studied comparatively. It is found that their preparations are phosphorylated with different rate, have two pH optima and differ in the sensitivity to cAMP and to thermostable protein inhibitor. The hydrophobic chromatography was used to separate components of the acetyl-CoA-carboxylase-protein kinase complex and to reveal in the chicken liver cAMP-dependent and cAMP-independent protein kinases highly specific to acetyl-CoA-carboxylase and strongly bound with it.  相似文献   

7.
Nicotinic acid in vivo affects the citrate demand for acetyl-CoA-carboxylase activation in the chicken liver under conditions of alimentary lipogenesis stimulation. Stoichiometry of the citrate binding with the dissociation constant of the enzyme-allosteric activator complex is determined under experimental conditions. Endogenic phosphorylation of acetyl-CoA-carboxylase completely correlates with its inactivation and depends on the citrate level. cAMP is established to have an activating effect on phosphorylation of acetyl-CoA-carboxylase of test animals.  相似文献   

8.
Regulation of Tryptophan Pyrrolase Activity in Xanthomonas pruni   总被引:3,自引:2,他引:1       下载免费PDF全文
Tryptophan pyrrolase was studied in partially purified extracts of Xanthomonas pruni. The dialyzed enzyme required both heme and ascorbate for maximal activity. Other reducing agents were able to substitute for ascorbate. Protoporphyrin competed with heme for the enzyme, suggesting that the native enzyme is a hemoprotein. The enzyme exhibited sigmoid saturation kinetics. Reduced nicotinamide adenine dinucleotide (NADH), reduced nicotinamide adenine dinucleotide phosphate (NADPH), nicotinic acid mononucleotide, and anthranilic acid enhanced the sigmoid kinetics and presumably bound to allosteric sites on the enzyme. The sigmoid kinetics were diminished in the presence of alpha-methyltryptophan. NAD, NADP, nicotinic acid, nicotinamide, nicotinamide mononucleotide, and several other related compounds were without effect on the activity of the enzyme. These data indicate that the activity of the enzyme is under feedback regulation by the ultimate end products of the pathway leading to NAD biosynthesis, as well as by certain intermediates of this pathway.  相似文献   

9.
Sialic acids are activated by CMP-5-N-acetylneuraminic acid synthetase prior to their transfer onto oligo- or polysaccharides. Here, we present the crystal structure of the N-terminal catalytically active domain of the murine 5-N-acetylneuraminic acid synthetase in complex with the reaction product. In contrast to the previously solved structure of 5-N-acetylneuraminic acid synthetase from Neisseria meningitidis and the related CMP-KDO-synthetase of Escherichia coli, the murine enzyme is a tetramer, which was observed with the active sites closed. In this conformation a loop is shifted by 6A towards the active site and thus an essential arginine residue can participate in catalysis. Furthermore, a network of intermolecular salt-bridges and hydrogen bonds in the dimer as well as hydrophobic interfaces between two dimers indicate a cooperative behaviour of the enzyme. In addition, a complex regulation of the enzyme activity is proposed that includes phosphorylation and dephosphorylation.  相似文献   

10.
Phosphoglucose isomerase (PGI; EC 5.3.1.9) is a cytosolic housekeeping enzyme of the sugar metabolism pathways that plays a key role in both glycolysis and gluconeogenesis. PGI is a multifunctional dimeric protein that extracellularly acts as a cytokine with properties that include autocrine motility factor (AMF)-eliciting mitogenic, motogenic, and differentiation functions, and PGI has been implicated in tumor progression and metastasis. Little is known of the biochemical regulation of PGI/AMF activities, although it is known that human PGI/AMF is phosphorylated at Ser(185) by protein kinase CK2 (CK2); however, the physiological significance of this phosphorylation is unknown. Thus, by site-directed mutagenesis, we substituted Ser(185) with aspartic acid (S185D) or glutamic acid (S185E), which introduces a negative charge and conformational changes that mimic phosphorylation. A Ser-to-Ala mutant protein (S185A) was generated to abolish phosphorylation. Biochemical analyses revealed that the phosphorylation mutant proteins of PGI exhibited decreased enzymatic activity, whereas the S185A mutant PGI protein retained full enzymatic activity. PGI phosphorylation by CK2 also led to down-regulation of enzymatic activity. Furthermore, CK2 knockdown by RNA interference was associated with up-regulation of cellular PGI enzymatic activity. The three recombinant mutant proteins exhibited indistinguishable cytokine activity and receptor-binding affinities compared with the wild-type protein. In both in vitro and in vivo assays, the wild-type and S185A mutant proteins underwent active species dimerization, whereas both the S185D and S185E mutant proteins also formed tetramers. These results demonstrate that phosphorylation affects the allosteric kinetic properties of the enzyme, resulting in a less active form of PGI, whereas non-phosphorylated protein species retain cytokine activity. The process by which phosphorylation modulates the enzymatic activity of PGI thus has an important implication for the understanding of the biological regulation of this key glucose metabolism-regulating enzyme.  相似文献   

11.
A soluble enzyme which catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the nitrogen atom of pyridine-3-carboxylic acid (nicotinic acid) could be detected in protein preparations from heterotrophic cell suspension cultures of soybean (Glycine max L.). Enzyme activity was enriched nearly 100-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography to study kinetic properties. S-adenosyl-L-methionine:nicotinic acid-N-methyltransferase (EC 2.1.1.7) showed a pH optimum at pH 8.0 and a temperature optimum between 35 and 40 degrees C. The apparent KM values were determined to be 78 microM for nicotinic acid and 55 microM for the cosubstrate. S-Adenosyl-L-homocysteine was a competitive inhibitor of the methyltransferase with a KI value of 95 microM. The native enzyme had a molecular mass of about 90 kDa. The catalytic activity was inhibited by reagents blocking SH groups, whereas other divalent cations did not significantly influence of the enzyme reaction. The purified methyltransferase revealed a remarkable specificity for nicotinic acid. No other pyridine derivative was a suitable methyl group acceptor. To study a potential methyltransferase activity with nicotinamide as substrate, an additional purification step was necessary to remove nicotinamide amidohydrolase activity from the enzyme preparation. This was achieved by affinity chromatography on S-adenosyl-L-homocysteine-Sepharose thus leading to a 580-fold purified enzyme which showed no methyltransferase activity toward nicotinamide as substrate.  相似文献   

12.
A kinetic analysis of the activity of acetyl-CoA carboxylase from chicken liver upon alimentary activation of lipogenesis and inhibition of this reaction by nicotinic acid was performed. It was found that the affinity of the enzyme isolated from chicken liver with stimulated lipogenesis is decreased by nicotinic acid for HCO3- but remains unchanged for ATP. The value of Vmax for ATP and the amount of the ATP used in this reaction remain unaffected. At the same time the enzyme affinity for acetyl-CoA is increased with a simultaneous decrease of Vmax. It is assumed that nicotinic acid inhibits the first step of the acetyl-CoA carboxylase-catalyzed reaction.  相似文献   

13.
A very hydrophilic compound was isolated from parsley cell suspension cultures in high yield after application of nicotinic acid. Using chemical, chromatographic and spectroscopic procedures the structure of this new plant constituent has been elucidated as nicotinic acid N-alpha-L-arabinopyranoside. This structure has been proved by chemical synthesis. An arabinosyltransferase was isolated from parsley cell suspension cultures and purified about 19-fold. The enzyme converted nicotinic acid N-alpha-arabinoside with UDP to nicotinic acid and UDP-arabinose. pH-Optimum (pH 7.0-8.0), Km value for nicotinic acid N-alpha-L-arabinoside (2.2 X 10(-4) mol/l) and mol. wt. (app. 70 000) of the transferase were measured. Function and biosynthesis of the arabinoside in cell cultures are discussed.  相似文献   

14.
15.
A particulate NMN glycohydrolase of rabbit spleen was solubilized with Triton X100 and purified approximately 100-fold. The enzyme was shown to have a pH maximum of 6.5, a Km of 0.25 mM, a Vmax of 5.3 mumol/min/mg protein, an activation energy of 7.9 kcal/mol, and a molecular weight of approximately 400,000. Both of the purified and the particulate enzymes exhibited identical catalytic properties with respect to substrate specificity, activation energy, pH profile and exchange reaction with nicotinic acid, except that the purified enzyme was highly activated with Triton X100 as compared with the particulate enzyme; it appears that the purified enzyme possesses the same catalytic properties as the enzyme present in the tissue and that solubilization does not significantly alter the native protein. In addition to catalytic activity with NMN, the rabbit spleen enzyme catalyzed an irreversible hydrolysis with NAD and NADP, exhibiting catalyzing activity ratios of NMN:NAD:NADP = 1.00:1.45:0.44 and Vmax/Km ratios of 1.00:1.7:2.3, respectively. These ratios of activity remained constant throughout purification of the enzyme and no separation of these activities was detected. Mutually competitive inhibition of the enzyme with Ki values similar to Km, and identical rates of thermal denaturation of the enzyme and activity-pH profiles with NMN or NAD indicated the hydrolysis of the C-N glycosidic linkage of the pyridine nucleotides to be catalyzed by the same enzyme. The enzyme was less specific for the purine structure of the substrate dinucleotides but was stereospecific for the glycosidic linkage cleaved. Nicotinamide riboside, the nicotinic acid analogs and the reduced forms were not hydrolyzed. A linear noncompetitive inhibition of NMN hydrolysis with nicotinamide indicated an ordered Uni-Bi mechanism in which nicotinamide was the first product released from the enzyme. A property that the rabbit spleen enzyme appears to share with other NAD glycohydrolases is the transglycosidation reaction. The ratio of transglycosidation reaction vs. hydrolysis catalyzed by the enzyme in the presence of NMN and nicotinic acid indicated that the enzyme could function as a primary transglycosidase rather than a hydrolytic enzyme in vivo.  相似文献   

16.
1. After nicotinic acid treatment, rat liver glycogen is depleted and phosphoenolpyruvate carboxykinase activity increased, to about twice the initial value. 2. The increase in phosphoenolpyruvate carboxykinase activity promoted by nicotinic acid is prevented by cycloheximide or actinomycin D, suggesting that this effect is produced by synthesis of the enzyme de novo. 3. Despite the enhancement of phosphoenolpyruvate carboxykinase activity and glycogen depletion, which occurs 5h after the injection of nicotinic acid, the gluconeogenic capacity of liver is low and considerably less than the values found in rats starved for 48h. 4. When the livers of well-fed rats are perfused in the presence of low concentrations of glucose, the activity of phosphoenolpyruvate carboxykinase significantly increases compared with the control. 5. This increase is not related to the glycogen content, but seems to be also the result of synthesis of the enzyme de novo, since this effect is counteracted by previous treatment with cycloheximide or actinomycin D. 6. Phosphoenolpyruvate carboxykinase activity is not increased in the presence of low concentrations of circulating glucose when 40 mM-imidazole (an activator of phosphodiesterase) is added to the perfusion medium. 7. Addition of dibutyryl cyclic AMP to the perfusion medium results in an increase in phosphoenolpyruvate carboxykinase activity, in spite of the presence of normal concentrations of circulating glucose. On the other hand, the concentration of cyclic AMP in the liver increases when that of glucose in the medium is low. 8. These results suggest that, in the absence of hormonal factors, the regulation of phosphoenolpyruvate carboxykinase can be accomplished by glucose itself, inadequate concentrations of it resulting in the induction of the enzyme. The mediator in this regulation, as in hormonal regulation, seems to be cyclic AMP.  相似文献   

17.
Escherichia coli nitroreductase is a flavoprotein that reduces a variety of quinone and nitroaromatic substrates. Its ability to convert relatively non-toxic prodrugs such as CB1954 (5-[aziridin-1-yl]-2,4-dinitrobenzamide) into highly cytotoxic derivatives has led to interest in its potential for cancer gene therapy. We have determined the structure of the enzyme bound to a substrate analogue, nicotinic acid, from three crystal forms at resolutions of 1.7 A, 1.8 A and 2.4 A, representing ten non-crystallographically related monomers. The enzyme is dimeric, and has a large hydrophobic core; each half of the molecule consists of a five-stranded beta-sheet surrounded by alpha-helices. Helices F and F protrude from the core region of each monomer. There is an extensive dimer interface, and the 15 C-terminal residues extend around the opposing monomer, contributing the fifth beta-strand. The active sites lie on opposite sides of the molecule, in solvent-exposed clefts at the dimer interface. The FMN forms hydrogen bonds to one monomer and hydrophobic contacts to both; its si face is buried. The nicotinic acid stacks between the re face of the FMN and Phe124 in helix F, with only one hydrogen bond to the protein. If the nicotinamide ring of the coenzyme NAD(P)H were in the same position as that of the nicotinic acid ligand, its C4 atom would be optimally positioned for direct hydride transfer to flavin N5. Comparison of the structure with unliganded flavin reductase and NTR suggests reduced mobility of helices E and F upon ligand binding. Analysis of the structure explains the broad substrate specificity of the enzyme, and provides the basis for rational design of novel prodrugs and for site-directed mutagenesis for improved enzyme activity.  相似文献   

18.
The nicotinic acetylcholine receptor is a substrate for cAMP-dependent protein kinase both in vitro and in vivo. Recently, it has been demonstrated that phosphorylation of the nicotinic receptor by this kinase increases its rate of rapid desensitization. We now report the identification of the cAMP-dependent phosphorylation sites on the gamma and delta subunits. Two-dimensional phosphopeptide mapping of the phosphorylated gamma and delta subunits, after limit proteolysis with thermolysin, indicated that each subunit is phosphorylated on a single site. Phosphoamino acid analysis of the 32P-labeled subunits demonstrates that phosphorylation had occurred exclusively on serine residues. Purified phosphorylated subunits were cleaved with cyanogen bromide and the resultant phosphopeptides were purified by reverse-phase high performance liquid chromatography. Shorter phosphopeptides, obtained by secondary digestion with trypsin, were purified and subjected to both automated gas-phase sequencing and manual Edman degradation. The results demonstrate that the gamma subunit was phosphorylated at Ser-353, contained within the sequence Arg-Arg-Ser(P)-Ser-Phe-Ile and that the delta subunit was phosphorylated at Ser-361, contained within the sequence Arg-Ser-Ser(P)-Ser-Val-Gay-Tyr-Ser-Lys. Determination of the sites phosphorylated within the structure of the gamma and delta subunits should contribute to the molecular characterization of the regulation of desensitization of the nicotinic acetylcholine receptor by protein phosphorylation.  相似文献   

19.
The nicotinic acid hydroxylase from Clostridium barkeri is a selenoenzyme, as evidenced by the copurification of selenium with enzyme activity. This conclusion is supported by data showing a 23-fold increase in nicotinic acid hydroxylase activity when C. barkeri was cultured in media supplemented with selenium. A labile, selenium-containing compound was released from the native protein by treatment with either chaotropic agents and heat or by heating alone. A stable selenium compound was formed when the enzyme was alkylated prior to denaturation. This compound had the same chromatographic properties as dialykyl selenide in a number of systems. The formation of dialkyl selenide upon alkylation is not consistent with the selenium moiety being selenocysteine. Thus, nicotinic acid hydroxylase represents a new type of selenoenzyme.  相似文献   

20.
A hormonally induced change in the covalent phosphorylation state of several enzymes is generally regarded as an important mechanism for hormonal modulation of enzyme activity. We have previously demonstrated that epinephrine stimulates the phosphorylation of a peptide of Mr = 220,000 in adipocytes. Incubation of 32P-labeled cytosolic proteins from adipocytes and hepatocytes with antisera raised against homogeneous chicken and rat liver acetyl coenzyme A carboxylase results in the specific and complete precipitation of the same phosphopeptide. No other major phosphopeptide is specifically precipitated. In hepatocytes, glucagon stimulates the incorporation of 32P into this peptide associated with an inhibition of enzyme activity. These data, coupled with previous studies in adipocytes, suggest that cyclic AMP-dependent protein phosphorylation plays a major role in the regulation of acetyl-CoA carboxylase activity and of fatty acid biosynthesis in adipose tissue and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号