首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A-kinase anchoring proteins tether cAMP-dependent protein kinase (PKA) to specific subcellular locations. The purpose of this study was to use fluorescence resonance energy transfer to monitor binding events in living cells between the type II regulatory subunit of PKA (RII) and the RII-binding domain of the human thyroid RII anchoring protein (Ht31), a peptide containing the PKA-binding domain of an A-kinase anchoring protein. RII was linked to enhanced yellow fluorescent protein (EYFP), Ht31 was linked to enhanced cyan fluorescent protein (ECFP), and these constructs were coexpressed in Chinese hamster ovary cells. Upon excitation of the donor fluorophore, Ht31.ECFP, an increase in emission of the acceptor fluorophore, RII.EYFP, and a decrease in emission from Ht31.ECFP were observed. The emission ratio (acceptor/donor) was increased 2-fold (p < 0.05) in cells expressing Ht31.ECFP and RII.EYFP compared with cells expressing Ht31P.ECFP, the inactive form of Ht31, and RII.EYFP. These results provide the first in vivo demonstration of RII/Ht31 interaction in living cells and confirm previous in vitro findings of RII/Ht31 binding. Using surface plasmon resonance, we also showed that the green fluorescent protein tags did not significantly alter the binding of Ht31 to RII. Thus, fluorescence resonance energy transfer can be used to directly monitor protein-protein interactions of the PKA signaling pathway in living cells.  相似文献   

2.
Although spectral variants of GFP should in theory be suited for fluorescence resonance energy transfer (FRET) and therefore suited for studies of protein-protein interactions, the unfavorable location of the fluorophore 15 A deep inside the GFP molecule has especially impaired this application. Here, metal-ion site engineering around the dimerization interface known from the X-ray structure of GFP is applied to the cyan and the yellow spectral variant of GFP to stabilize the heterodimeric form of these molecules and thereby increase FRET signaling. The FRET signal, determined as the ratio between the maximal emission for the yellow variant, 530 nm, and the cyan variant, 475 nm, during excitation of the cyan variant at 433 nm was increased up to 8-10-fold in the presence of 10(-4) M ZnCl2 by engineering of two symmetric metal-ion sites being either bidentate or tridentate. A similar increase in FRET signaling was however obtained in a pair of molecules in which a single bidentate metal-ion site was generated by introducing a zinc-binding residue in each of the two spectral variants of GFP and therefore creating an obligate heterodimeric pair. It is concluded that FRET signaling between spectral variants of GFP can be increased by stabilizing dimer formation and especially by favoring heterodimer formation in this case performed by metal-ion site engineering.  相似文献   

3.
The use of green fluorescent protein (GFP) fusions as biosensors for examining protein localization and dynamics has revolutionized cell biology. Here, we describe the methods developed for imaging of GFP-fusions in the fission yeast Schizosaccharomyces pombe using fluorescence microscopy, with a focus on the use of time-lapse imaging to analyze the dynamics of microtubules. We discuss the considerations in fluorescence microscopy, cell preparation, data acquisition, and image analysis appropriate for analysis of living cells.  相似文献   

4.
BACKGROUND: The combination of fluorescence resonance energy transfer (FRET) and flow cytometry offers a statistically firm approach to study protein associations. Fusing green fluorescent protein (GFP) to a studied protein usually does not disturb the normal function of a protein, but quantitation of FRET efficiency calculated between GFP derivatives poses a problem in flow cytometry. METHODS: We generated chimeras in which cyan fluorescent protein (CFP) was separated by amino acid linkers of different sizes from yellow fluorescent protein (YFP) and used them to calibrate the cell-by-cell flow cytometric FRET measurements carried out on two different dual-laser flow cytometers. Then, CFP-Kip1 was coexpressed in yeast cells with YFP and cyclin-dependent kinase-2 (Cdk2) and served as a positive control for FRET measurements, and CFP-Kip1 coexpressed with a random peptide fused to YFP was the negative control. RESULTS: We measured donor, direct, and sensitized acceptor fluorescence intensities and developed a novel way to calculate a factor (alpha) that characterized the fluorescence intensity of acceptor molecules relative to the same number of excited donor molecules, which is essential for quantifying FRET efficiency. This was achieved by calculating FRET efficiency in two different ways and minimizing the squared difference between the two results by changing alpha. Our method reliably detected the association of Cdk2 with its inhibitor, Kip1, whereas the nonspecific FRET efficiency between Cdk2 and a random peptide was negligible. We identified and sorted subpopulations of yeast cells showing interaction between the studied proteins. CONCLUSIONS: We have described a straightforward novel calibration method to accurately quantitate FRET efficiency between GFP derivatives in flow cytometry.  相似文献   

5.
6.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

7.
Visible fluorescent proteins from Aequorea victoria contain next to the fluorophoric group a single tryptophan residue. Both molecules form a single donor-acceptor pair for resonance energy transfer (RET) within the protein. Time-resolved fluorescence experiments using tryptophan excitation have shown that RET is manifested by a distinct growing in of acceptor fluorescence at a rate characteristic for this process. In addition, time-resolved fluorescence anisotropy measurements under the same excitation-emission conditions showed a correlation time that is similar to the time constant of the same RET process with the additional benefit of gaining information on the relative orientation of the corresponding transition dipoles.  相似文献   

8.
《Gene》1996,173(1):13-17
We report fluorescent resonance energy transfer (FRET) between two linked variants of the green fluorescent protein (GFP). The C terminus of a red-shifted variant of GFP (RSGFP4) is fused to a flexible polypeptide linker containing a Factor Xa protease cleavage site. The C terminus of this linker is in turn fused to the N terminus of a blue variant of GFP (BFP5). The gene product has spectral properties that suggest energy transfer is occurring from BFP5 to RSGFP4. Upon incubation with Factor Xa, the protein is cleaved, and the two fluorescent proteins dissociate. This is accompanied by a marked decrease in energy transfer. The RSGFP4::BFP5 fusion protein demonstrates the feasibility of using FRET between two GFP derivatives as a tool to monitor protein-protein interactions; in addition, this construct may find applications as an intracellular screen for protease inhibitors.  相似文献   

9.
The "lever-arm" model of a myosin motor predicts that the lever-arm domain in the myosin head tilts and swings against the catalytic domain during ATP hydrolysis, resulting in force generation. To investigate if this "swing" of the lever arm really occurs during the hydrolysis of ATP, we employed fluorescence resonance energy transfer (FRET) between two fluorescent proteins [green (GFP) and blue (BFP)] fused to the N and C termini of the Dictyostelium myosin-motor domain. FRET measurements showed that the C-terminal BFP in the fusion protein first swings against the N-terminal GFP at the isomerization step of the ATP hydrolysis cycle and then swings back at the phosphate-release step. Because the C-terminal BFP mimics the motion of the lever arm, the result indicates that the lever arm swings at the specific steps of the ATP hydrolysis cycle, i.e., at the isomerization and phosphate-release steps. The latter swing may correspond to the power stroke of myosin, while the former may be related to the recovery stroke.  相似文献   

10.
Green fluorescent protein and its variants are frequently used as F?rster (fluorescence) resonance energy transfer (FRET) pairs to determine the proximity of protein domains. We prepared fusion proteins comprising yellow fluorescent protein-Dictyostelium myosin II motor domain-cyan fluorescent protein (YFP-myosin-CFP) and compared their FRET properties with an existing construct (GFP-myosin-BFP), containing a green fluorescent protein acceptor and blue fluorescent protein donor [Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. and Sutoh, K. (1998) Nature 396, 380-383]. The latter construct showed an apparent 40% reduction in acceptor fluorescence on ATP addition, when excited via the donor, compared with the YFP-myosin-CFP constructs which showed a small increase (相似文献   

11.
Future developments in cellulosic materials are predicated by the need to understand the fundamental interactions that occur at cellulose fibre interfaces. These interfaces strongly influence the material properties of fibre networks and fibre reinforced composites. This study takes advantage of fluorescence resonance energy transfer (FRET) and fluorescence microscopy to image cellulose interfaces. Steady-state epi-fluorescence microscopy suggests that energy transfer from coumarin dyed fibres to fluorescein dyed fibres is occurring at the fibre–fibre interface. The FRET response for natural spruce fibre interfaces is distinctly different from that observed in synthetic viscose fibres. This approach constitutes a novel methodology for the characterization of soft material interfaces on the molecular scale, and represents a major opportunity for advancing the understanding of fibrous network structures.  相似文献   

12.
Single-molecule fluorescence resonance energy transfer   总被引:18,自引:0,他引:18  
Fluorescent resonance energy transfer (FRET) is a powerful technique for studying conformational distribution and dynamics of biological molecules. Some conformational changes are difficult to synchronize or too rare to detect using ensemble FRET. FRET, detected at the single-molecule level, opens up new opportunities to probe the detailed kinetics of structural changes without the need for synchronization. Here, we discuss practical considerations for its implementation including experimental apparatus, fluorescent probe selection, surface immobilization, single-molecule FRET analysis schemes, and interpretation.  相似文献   

13.
The native cysteine residues of green fluorescent protein (GFP) at positions 48 and 70 were replaced by non-thiolic amino acids, and new cysteine sites were introduced at specific, surface positions. Based on molecular modeling of the GFP structure, the sites chosen for mutagenesis to Cys were glutamic acid at position 6 and isoleucine at position 229. These new, unique cysteine sites provided reactive thiol groups suitable for site-specific chemical modification by eosin-based fluorescence labels. The new constructs were designed to serve as the basis of proof of principle for fluorescence resonance energy transfer (FRET) using an enzyme-activated (trypsin) intervening sequence between native and chemically conjugated fluorophores. These eosin moieties provided chemical FRET partners for the native GFP chromophore. On excitation, these GFP-eosin constructs exhibited strong intramolecular FRET, with quenching of the native GFP (511 nm) fluorophore emission and emission around 540 nm, corresponding to eosin. GFP mutants engineered with trypsin-sensitive sequences close to the eosin site, so that on trypsinolysis FRET was destroyed, the emission wavelength switching from that of the chemical FRET partner back to that of the native GFP fluorophore, providing efficient, ratio-based detection. This protein engineering provides the basis for novel bioprobes for enzymatic triggering using intramolecular FRET between GFP and carefully sited chemical labels.  相似文献   

14.
15.
Kardash E  Bandemer J  Raz E 《Nature protocols》2011,6(12):1835-1846
Fluorescence resonance energy transfer (FRET)-based molecular biosensors serve as important tools for studying protein activity in live cells and have been widely used for this purpose over the past decade. However, FRET biosensors are rarely used in the context of the live organism because of the inherent high cellular complexity and imaging challenges associated with the three-dimensional environment. Here we provide a protocol for using single-chain intramolecular FRET-based biosensors in early development. We provide a general protocol for FRET ratio imaging in embryos, including the data-acquisition conditions and the algorithm for ratio image generation. We then use the pRaichu RacFRET biosensor to exemplify the adaptation and optimization of a particular biosensor for use in live zebrafish embryos. Once an optimized biosensor is available, the complete procedure, including introduction of the probes into embryos, imaging and data analysis, requires 2-3 d.  相似文献   

16.
We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane.  相似文献   

17.
Because of its unusual spectroscopic properties, green fluorescent protein (GFP) has become a useful tool in molecular genetics, biochemistry and cell biology. Here, we computationally characterize the behavior of two GFP constructs, designed as bioprobes for enzymatic triggering using intramolecular fluorescence resonance energy transfer (FRET). These constructs differ in the location of an intramolecular FRET partner, an attached chemical chromophore (either near an N-terminal or C-terminal site). We apply the temperature replica exchange molecular dynamics method to the two flexible constructs in conjunction with a generalized Born implicit solvent model. The calculated rate of FRET was derived from the interchromophore distance, R, and orientational factor, kappa(2). In agreement with experiment, the construct with the C-terminally attached dye was predicted to have higher energy transfer rate than observed for the N-terminal construct. The molecular basis for this observation is discussed. In addition, we find that the orientational factor, kappa(2), deviates from the commonly assumed value, the implications of which are also considered.  相似文献   

18.
19.
We present, for the red fluorescent protein mCherry acting as both fluorescence resonant energy transfer (FRET) donor and acceptor, Förster critical distance (r0) values with five important visible fluorescent protein (VFP) variants as well as with itself. The pair EYFP-mCherry exhibits an r0 of 5.66 nm, equaling or exceeding any combination of VFPs reported previously. Moreover, mCherry should be an excellent chromophore for homo-FRET with an r0 of 5.10 nm for energy transfer between two mCherry moieties. Finally, mCherry exhibits higher r0 values than does DsRed. These characteristics, combined with mCherry’s rapid folding and excellent spectral properties, suggest that mCherry constitutes a valuable long-wavelength hetero-FRET acceptor and probe for homo-FRET experiments.  相似文献   

20.
Highly efficient fluorescence resonance energy transfer between cyan(CFP) and yellow fluorescent proteins (YFP), the cyan- and yellow-emitting variants of the Aequorea green fluorescent protein, respectively, was achieved by tightly concatenating the two proteins. After the C-terminus of CFP and the N-terminus of YFP were truncated by 11 and 5 amino acids, respectively, the proteins were fused through a leucine-glutamate dipeptide. The resulting chimeric protein, which we called Cy11.5, exhibited a simple emission spectrum that peaked at 527 nm when the protein was excited at 436 nm. The time-resolved emission of Cy11.5 was measured using a streak camera. After excitation of Cy11.5 with a 400 nm ultrashort pulse, a fast decay of the CFP emission and a concomitant rise of the YFP emission were observed with a lifetime of 66 ps. By contrast, the emission from CFP alone showed a decay component with a lifetime of 2.9 ns. We concluded that in fully folded Cy11.5 molecules, intramolecular FRET occurred with an efficiency of 98%. Importantly, most Cy11.5 molecules were properly folded, and the protein was highly resistant to all of the tested proteases. In living cells, therefore, Cy11.5 behaved as a single fluorescent protein with a broad excitation spectrum. Moreover, Cy11.5 was used as an optical highlighter after photobleaching of YFP. When HeLa cells expressing Cy11.5 were irradiated at 514.5 nm, a 10-fold increase in the 475 nm fluorescence intensity was observed. These features make Cy11.5 useful as an optical highlighter and a new-colored fluorescent protein for multicolor imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号