首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ionotropic glutamate receptor (iGluR) subunits contain a approximately 400-residue extracellular N-terminal domain ("X domain"), which is sequence-related to bacterial amino acid-binding proteins and to class C G-protein-coupled receptors. The X domain has been implicated in the assembly, transport to the cell surface, allosteric ligand binding, and desensitization in various members of the iGluR family, but its actual role in these events is poorly characterized. We have studied the properties of homomeric alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA)-selective GluR-D glutamate receptors carrying N-terminal deletions. Our analysis indicates that, surprisingly, transport to the cell surface, ligand binding properties, agonist-triggered channel activation, rapid desensitization, and allosteric potentiation by cyclothiazide can occur normally in the complete absence of the X domain (residues 22-402). The relatively intact ligand-gated channel function of a homomeric AMPA receptor in the absence of the X domain indirectly suggests more subtle roles for this domain in AMPA receptors, e.g. in the assembly of heteromeric receptors and in synaptic protein interactions.  相似文献   

2.
AMPA receptors mediate fast, glutamatergic synaptic transmission in the central nervous system. The time-course of the associated postsynaptic current has been suggested to be determined principally by the kinetics of glutamate binding and receptor desensitization. Aniracetam and cyclothiazide are drugs capable of selectively preventing desensitization of the AMPA receptor. To investigate the relevance of desensitization to fast synaptic transmission in the cerebellum we have tested these compounds against AMPA-induced depolarizations and postsynaptic potentials using the grease-gap recording technique. Aniracetam (1 M-5 mM) and cyclothiazide (1 M-500 M) both enhanced the depolarising action of AMPA (1 M) on Purkinje cells in a concentration-dependent manner. At the highest concentrations tested, the increases over controls were approximately 600% and 800% respectively. Aniracetam also increased, in a concentration-dependent manner, the amplitude of the evoked synaptic potentials of both parallel fibre-Purkinje cell and mossy fibre-granule cell pathways, with the highest concentrations tested enhancing the potentials by approximately 60% and 75% respectively. These data suggest that, at two different synapses in the cerebellum, AMPA receptor desensitization occurs physiologically and is likely to contribute to the shape of fast synaptic currents.Abbreviations CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - NMDA N-methyl-D-aspartate - AMPA -amino-3-hydroxy-5-methyl-4-isoxazole propionate - AP5 D-2-amino-5-phosphopentanoate - EPSP excitatory postsynaptic potential - EPSC excitatory postsynaptic current - DMSO dimethyl sulphoxide - NBQX 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline Special issue dedicated to Dr. Robert Balázs.  相似文献   

3.
We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric compound 1-Me-Tet-AMPA is essentially inactive. We here report the enantiopharmacology of 2-Me-Tet-AMPA in radioligand binding and cortical wedge electrophysiological assay systems, and using cloned AMPA (GluR1-4) and kainic acid (KA) (GluR5, 6, and KA2) receptor subtypes expressed in Xenopus oocytes. 2-Me-Tet-AMPA was resolved using preparative chiral HPLC. Zwitterion (-)-2-Me-Tet-AMPA was assigned the (R)-configuration based on an X-ray crystallographic analysis supported by the elution order of (-)- and (+)-2-Me-Tet-AMPA using four different chiral HPLC columns and by circular dichroism spectra. None of the compounds tested showed detectable affinity for N-methyl-D-aspartic acid (NMDA) receptor sites, and (R)-2-Me-Tet-AMPA was essentially inactive in all of the test systems used. Whereas (S)-2-Me-Tet-AMPA showed low affinity (IC(50) = 11 microM) in the [(3)H]KA binding assay, it was significantly more potent (IC(50) = 0.009 microM) than AMPA (IC(50) = 0.039 microM) in the [(3)H]AMPA binding assay, and in agreement with these findings, (S)-2-Me-Tet-AMPA (EC(50) = 0.11 microM) was markedly more potent than AMPA (EC(50) = 3.5 microM) in the electrophysiological cortical wedge model. In contrast to AMPA, which showed comparable potencies (EC(50) = 1.3-3.5 microM) at receptors formed by the AMPA receptor subunits (GluR1-4) in Xenopus oocytes, more potent effects and a substantially higher degree of subunit selectivity were observed for (S)-2-Me-Tet-AMPA: GluR1o (EC(50) = 0.16 microM), GluR1o/GluR2i (EC(50) = 0.12 microM), GluR3o (EC(50) = 0.014 microM) and GluR4o (EC(50) = 0.009 microM). At the KA-preferring receptors GluR5 and GluR6/KA2, (S)-2-Me-Tet-AMPA showed much weaker agonist effects (EC(50) = 8.7 and 15.3 microM, respectively). It is concluded that (S)-2-Me-Tet-AMPA is a subunit-selective and highly potent AMPA receptor agonist and a potentially useful tool for studies of physiological AMPA receptor subtypes.  相似文献   

4.
The activation of glutamate receptors by kainic acid and domoic acid   总被引:9,自引:0,他引:9  
Hampson DR  Manalo JL 《Natural toxins》1998,6(3-4):153-158
The neurotoxins kainic acid and domoic acid are potent agonists at the kainate and alphaamino-5-methyl-3-hydroxyisoxazolone-4-propionate (AMPA) subclasses of ionotropic glutamate receptors. Although it is well established that AMPA receptors mediate fast excitatory synaptic transmission at most excitatory synapses in the central nervous system, the role of the high affinity kainate receptors in synaptic transmission and neurotoxicity is not entirely clear. Kainate and domoate differ from the natural transmitter, L-glutamate, in their mode of activation of glutamate receptors; glutamate elicits rapidly desensitizing responses while the two neurotoxins elicit non-desensitizing or slowly desensitizing responses at AMPA receptors and some kainate receptors. The inability to produce desensitizing currents and the high affinity for AMPA and kainate receptors are undoubtedly important factors in kainate and domoate-mediated neurotoxicity. Mutagenesis studies on cloned glutamate receptors have provided insight into the molecular mechanisms responsible for these unique properties of kainate and domoate.  相似文献   

5.
Glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system, and excessive stimulation of these receptors is involved in a variety of neurological disorders and neuronal damage from stroke. The development of new subtype-specific antagonists would be of considerable therapeutic interest. Natural products can provide important new lead compounds for drug discovery. The only natural product known to inhibit glutamate receptors competitively is (−)-kaitocephalin, which was isolated from the fungus Eupenicillium shearii and found to protect CNS neurons from excitotoxicity. Previous work has shown that it is a potent antagonist of some subtypes of glutamate receptors (AMPA and NMDA, but not kainate). The structure of kaitocephalin bound to the ligand binding domain of the AMPA receptor subtype, GluA2, is reported here. The structure suggests how kaitocephalin can be used as a scaffold to develop more selective and high affinity antagonists for glutamate receptors.  相似文献   

6.
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).  相似文献   

7.
Abstract: Activation of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype of ionotropic glutamate receptors has been shown to result in a rapid desensitization of the receptor in the presence of certain agonists. One effect of AMPA receptor desensitization in the hippocampus may be to decrease the efficacy of AMPA receptor agonists at stimulating the release of norepinephrine from noradrenergic terminals. Recently, cyclothiazide was reported to inhibit AMPA receptor desensitization by acting at a distinct site on AMPA receptors. We have examined the effect of cyclothiazide on AMPA- and kainate (KA)-induced norepinephrine release from rat hippocampal slices to determine whether cyclothiazide would increase the efficacy of AMPA-induced [3H]norepinephrine release by inhibiting AMPA receptor desensitization. Cyclothiazide was observed to potentiate markedly both AMPA- and KA-induced [3H]norepinephrine release. This potentiation is selective for AMPA/KA receptors as cyclothiazide did not potentiate N -methyl- d -aspartate-induced [3H]norepinephrine release or release induced by the nonspecific depolarizing agents veratridine and 4-aminopyridine. These results demonstrate that AMPA receptor-mediated modulation of [3H]norepinephrine release from rat brain slices is a useful approach to studying the cyclothiazide modulatory site on the AMPA receptor complex.  相似文献   

8.
Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex   总被引:10,自引:0,他引:10  
Compartmentalization of glutamate receptors with the signaling enzymes that regulate their activity supports synaptic transmission. Two classes of binding proteins organize these complexes: the MAGUK proteins that cluster glutamate receptors and AKAPs that anchor kinases and phosphatases. In this report, we demonstrate that glutamate receptors and PKA are recruited into a macromolecular signaling complex through direct interaction between the MAGUK proteins, PSD-95 and SAP97, and AKAP79/150. The SH3 and GK regions of the MAGUKs mediate binding to the AKAP. Cell-based studies indicate that phosphorylation of AMPA receptors is enhanced by a SAP97-AKAP79 complex that directs PKA to GluR1 via a PDZ domain interaction. As AMPA receptor phosphorylation is implicated in regulating synaptic plasticity, these data suggest that a MAGUK-AKAP complex may be centrally involved.  相似文献   

9.
Injection of chick cerebellar membranes, rich in kainate binding sites, into Xenopus oocytes resulted in the structural integration of chick membrane patches into the oocyte plasma membrane that could be easily identified by specific immunofluorescent staining. Application of kainate to the oocyte perfusion medium, under voltage-clamp conditions, induced dose-dependent (EC50 = 87+/-14 microM) inward currents, confirming the functional incorporation to the oocyte of kainate-driven channels. Responses to kainate were consistently nondesensitizing and strongly potentiated by cyclothiazide, suggesting the selective involvement of alpha-amino-3-hydroxy-5-methyl-4isoxazolepropionate (AMPA)-preferring receptors. Binding experiments with (S)-[3H]AMPA confirmed the presence in the chick membrane preparation of low-affinity AMPA receptors (K(D) = 278 nM) amounting to <2% of the total population of kainate binding sites. A tenfold concentration of guanine nucleotides, with different degrees of phosphorylation, blocked the responses to 100 microM kainate by approximately 90%. In the case of GMP, additional concentration-inhibition studies yielded an IC50 of 180+/-11 microM. Our results illustrate the apparent failure of kainate-binding proteins to form functional channels, even when maintaining their own native membrane environment, and confirm the antagonistic behavior of guanine nucleotides, including GMP, toward glutamate receptors, in agreement with previous results of ligand-binding experiments and, more interestingly, with the marked neuroprotective effects of some guanine nucleotides in different excitotoxicity experimental paradigms.  相似文献   

10.
Measurements suggest that the hemolymph glutamate concentrations in Drosophila are relatively high. This raises the possibility that extracellular glutamate could be an important regulator of glutamatergic transmission in vivo. Using voltage clamp electrophysiology, we found that synaptic currents in D. melanogaster larval neuromuscular junctions are reduced by extracellular glutamate (EC50: ~0.4 mM), such that only 10–30% of receptors were functionally available in 1 mM extracellular glutamate. The kinetics of synaptic currents were also slowed in a dose-dependent fashion (EC50: ~1 mM), consistent with the idea that extracellular glutamate preferentially removes the fastest-desensitizing receptors from the functional pool. Prolonged exposure (several hours) to extracellular glutamate also triggers loss of glutamate receptor immunoreactivity from neuromuscular junctions. To determine whether this receptor loss requires that glutamate bind directly to the lost receptors, we examined glutamate-dependent loss of receptor immunoreactivity in larvae with glutamate receptor ligand binding mutations. Our results suggest that glutamate-dependent receptor loss requires binding of glutamate directly to the lost receptors. To determine whether lost receptor protein is degraded or merely redistributed, we used immunoblots. Results suggest that glutamate receptor protein is redistributed, but not degraded, after prolonged exposure to high extracellular glutamate. K. Chen and H. Augustin contributed equally to this work.  相似文献   

11.
Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.  相似文献   

12.
DiGregorio DA  Nusser Z  Silver RA 《Neuron》2002,35(3):521-533
Diffusion of glutamate from the synaptic cleft can activate high-affinity receptors, but is not thought to contribute to fast AMPA receptor-mediated transmission. Here, we show that single AMPA receptor EPSCs at the cerebellar mossy fiber-granule cell connection are mediated by both direct release of glutamate and rapid diffusion of glutamate from neighboring synapses. Immunogold localization revealed that AMPA receptors are located exclusively in postsynaptic densities, indicating that spillover of glutamate occurs between synaptic contacts. Spillover currents contributed half the synaptic charge and exhibited little trial-to-trial variability. We propose that spillover of glutamate improves transmission efficacy by both increasing the amplitude and duration of the EPSP and reducing fluctuations arising from the probabilistic nature of transmitter release.  相似文献   

13.
Chemical synaptic transmission is a fundamental component of interneuronal communications in the central nervous system (CNS). Discharge of a presynaptic vesicle containing a few thousand molecules (a quantum) of neurotransmitter into the synaptic cleft generates a transmitter concentration signal that drives postsynaptic ion-channel receptors. These receptors exhibit multiple states, with state transition kinetics dependent on neurotransmitter concentration. Here, a novel and simple analytical approach for describing gating of multi-state receptors by signals with complex continuous time courses is used to describe the generation of glutamate-mediated quantal postsynaptic responses at brain synapses. The neurotransmitter signal, experienced by multi-state N-methyl-D-aspartate (NMDA)- and L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors at specific points in a synaptic cleft, is approximated by a series of step functions of different intensity and duration and used to drive a Markovian, multi-state kinetic scheme that describes receptor gating. Occupancy vectors at any point in time can be computed interatively from the occupancy vectors at the times of steps in transmitter concentration. Multi-state kinetic schemes for both the low-affinity AMPA subtype of glutamate receptor and for the high-affinity NMDA subtype are considered, and expected NMDA and AMPA components of synaptic currents are calculated. The amplitude of quantal responses mediated by postsynaptic receptor clusters having specific spatial distributions relative to foci of quantal neurotransmitter release is then calculated and related to the displacement between the center of the postsynaptic receptor cluster and the focus of synaptic vesicle discharge. Using this approach we show that the spatial relation between the focus of release and the center of the postsynaptic receptor cluster affects synaptic efficacy. We also show how variation in this relation contributes to variation in synaptic current amplitudes.  相似文献   

14.
In the mammalian central nervous system, the majority of fast excitatory synaptic transmission is mediated by glutamate acting on AMPA-type ionotropic glutamate receptors. The abundance of AMPA receptors at the synapse can be modulated through receptor trafficking, which dynamically regulates many fundamental brain functions, including learning and memory. Reversible posttranslational modifications, including phosphorylation, palmitoylation and ubiquitination of AMPA receptor subunits are important regulatory mechanisms for controlling synaptic AMPA receptor expression and function. In this review, we highlight recent advances in the study of AMPA receptor posttranslational modifications and discuss how these modifications regulate AMPA receptor trafficking and function at synapses.  相似文献   

15.
In order to identify new subtype-selective (S)-glutamate (Glu) receptor ligands we have synthesized (RS)-2-amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid [(RS)-TDPA]. Resolution of (RS)-TDPA by chiral chromatography was performed using a Crownpac CR(+) column affording (R)- and (S)-TDPA of high enantiomeric purity (enantiomeric excess=99.9%). An X-ray crystallographic analysis revealed that the early eluting enantiomer has R-configuration. Both enantiomers showed high affinity as well as high agonist activity at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, determined using a [(3)H]AMPA binding assay and an electrophysiological model, respectively. The affinities and agonist activities obtained for (R)-TDPA (IC(50)=0.265 microM and EC(50)=6.6 microM, respectively) and (S)-TDPA (IC(50)=0.065 microM and EC(50)=20 microM, respectively) revealed a remarkably low AMPA receptor stereoselectivity, (S)-TDPA showing the highest affinity and (R)-TDPA the most potent agonist activity. In addition, (S)-TDPA was shown to interact with synaptosomal Glu uptake sites displacing [(3)H](R)-aspartic acid (IC(50 ) approximately 390 microM). An enantiospecific and subtype-selective agonist activity was observed for (S)-TDPA at group I metabotropic Glu (mGlu) receptors (EC(50)=13 microM at mGlu(5) and EC(50)=95 microM at mGlu(1)).  相似文献   

16.
β-N-Oxalylamino-L-Alanine Action on Glutamate Receptors   总被引:1,自引:1,他引:0  
beta-N-Oxalylamino-L-alanine (L-BOAA) is a non-protein excitatory amino acid present in the seed of Lathyrus sativus L. This excitotoxin has been characterized as the causative agent of human neurolathyrism, an upper motor neuron disease producing corticospinal dysfunction from excessive consumption of the lathyrus pea. Previous behavioral, tissue-culture, and in vitro receptor binding investigations revealed that L-BOAA might mediate acute neurotoxicity through quisqualate (QA)-preferring glutamate receptors. The present study demonstrates the stereospecific action of L-BOAA on glutamate receptor binding in whole mouse brain synaptic membranes. L-BOAA was most active in displacing thiocyanate (KSCN)-sensitive specific tritiated (RS)-alpha-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) binding (i.e., QA receptor) (Ki = 0.76 microM) with a rank-order potency of QA greater than kainate greater than N-methyl-D-aspartate (NMDA). By contrast, the nonneurotoxic D-BOAA isomer (100 microM) was essentially inactive in displacing radioligands for glutamate receptors, except the NMDA site, where it was equipotent with L-BOAA. Scatchard analysis of L-BOAA displacement of specific [3H]AMPA binding indicated competitive antagonism (KD: control, 135 nM; L-BOAA, 265 nM) without a significant change in QA-receptor density, and Hill plots yielded coefficients approaching unity. Differential L-BOAA concentration-dependent decreases in specific [3H]AMPA binding were observed in synaptic membranes, indicating that the neurotoxin was more potent in displacing specific binding from frontal cortex membranes, followed by that for corpus striatum, hippocampus, cerebellum, and spinal cord. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The glutamate receptor system is implicated in the development and maintenance of epileptic seizures and it has been reported that compounds showing high affinity for both AMPA and KA binding sites are more potent anticonvulsants than compounds having selective affinity toward AMPA or KA receptor. These outcomes make such inhibitors future potential antiepileptic drugs. So, the pair wise binding affinity for AMPA and KA receptors inhibition was proposed by using the addition between biological activities of ligands. This approach for evaluation of pair wise binding affinity was exemplified using set of triazolo [1,5-a] quinoxaline for AMPA and KA receptors. The biological activity towards AMPA and KA receptors (expressed as -log IC5O) was taken as a dependent variable for building CoMFA and CoMSIA models. The resulting models show the ways of increasing binding affinity to both AMPA and KA receptors as potential target for epilepsy. The statistically significant results show that pair wise CoMFA and CoMSIA models are better then individual models. The resulting cross-validated r2CV value 0.806 for CoMFA is greater then 0.780 for CoMSIA pair wise model. The non-cross validated run giving a coefficient of determination r2 value of 0.946 and 0.908 for CoMFA and CoMSIA respectively, provided a good correlation between the observed and computed affinities of the compounds.  相似文献   

18.
Kato AS  Siuda ER  Nisenbaum ES  Bredt DS 《Neuron》2008,59(6):986-996
AMPA-type glutamate receptors (GluRs) play major roles in excitatory synaptic transmission. Neuronal AMPA receptors comprise GluR subunits and transmembrane AMPA receptor regulatory proteins (TARPs). Previous studies identified five mammalian TARPs, gamma-2 (or stargazin), gamma-3, gamma-4, gamma-7, and gamma-8, that enhance AMPA receptor function. Here, we classify gamma-5 as a distinct class of TARP that modulates specific GluR2-containing AMPA receptors and displays properties entirely dissimilar from canonical TARPs. Gamma-5 increases peak currents and decreases the steady-state currents selectively from GluR2-containing AMPA receptors. Furthermore, gamma-5 increases rates of GluR2 deactivation and desensitization and decreases glutamate potency. Remarkably, all effects of gamma-5 require editing of GluR2 mRNA. Unlike other TARPs, gamma-5 modulates GluR2 without promoting receptor trafficking. We also find that gamma-7 regulation of GluR2 is dictated by mRNA editing. These data establish gamma-5 and gamma-7 as a separate family of "type II TARPs" that impart distinct physiological features to specific AMPA receptors.  相似文献   

19.
6-Hydroxykynurenic acid (6-HKA), a derivative of kynurenic acid (KYNA) extracted from Ginkgo biloba leaves, was tested for its putative glutamate receptor (GluR) antagonism in comparison to the scaffold substance. The patch-clamp method together with fast-application techniques were used to estimate inhibition by 6-HKA and KYNA of agonist binding at NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (NMDARs and AMPARs) of CA1 pyramidal neurones. 6-Hydroxykynurenic acid proved to be a low-affinity antagonist. When comparing with KYNA, 6-HKA was less potent at NMDARs (IC(50) = 136 versus 59 microM), but showed a higher affinity to AMPARs (K(B) = 22 versus 172 microM). The replacement of 6-HKA and KYNA by glutamate was investigated on outside-out patches. Both antagonists competitively inhibited AMPAR responses and displayed fast unbinding kinetics, but the derivative was significantly slower displaced than KYNA (tau = 1.63 versus 1.22 ms). Our findings demonstrate that 6-hydroxylation considerably changes the pharmacological profile of KYNA. Among the 6-derivatives of KYNA, 6-HKA shows the highest affinity to AMPARS: Despite its relatively low lipophily, these properties might be of clinical relevance under conditions that compromise the integrity of the blood-brain barrier. Furthermore, 6-HKA should be a useful tool to analyse glutamate-mediated synaptic responses.  相似文献   

20.
Ionotropic glutamate receptors function can be affected by neurosteroids, both positively and negatively. N-methyl-D-aspartate (NMDA) receptor responses to exogenously applied glutamate are potentiated or inhibited (depending on the receptor subunit composition) by pregnenolone sulphate (PS) and inhibited by pregnanolone sulphate (3alpha5betaS). While PS effect is most pronounced when its application precedes that of glutamate, 3alpha5betaS only binds to receptors already activated. Synaptically activated NMDA receptors are inhibited by 3alpha5betaS, though to a lesser extent than those tonically activated by exogenous glutamate. PS, on the other hand, shows virtually no effect on any of the models of synaptically activated NMDA receptors. The site of neurosteroid action at the receptor molecule has not yet been identified, however, the experiments indicate that there are at least two distinct extracellularly located binding sites for PS mediating its potentiating and inhibitory effects respectively. Experiments with chimeric receptors revealed the importance of the extracellular loop connecting the third and the fourth transmembrane domain of the receptor NR2 subunit for the neurosteroid action. alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors are inhibited by both PS and 3alpha5betaS. These neurosteroids also affect AMPA receptors-mediated synaptic transmission, however, in a rather indirect way, through presynaptically located targets of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号