首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An attempt was made to convert the N-glycan structures in Raphanus sativus seeds during germination with a view to develop a method for regulating the N-glycan structures using glycosidase inhibitors. The N-glycan structures of glycoproteins in the roots of seedlings germinated for three days were analyzed by hydrazinolysis followed by N-acetylation, pyridylamination and HPLC. Pyridylaminated sugar chains obtained in the absence of the inhibitors had plant type structures consisting of Man(3)FucXylGlcNAc(2)(M3FX), Man(5-9)GlcNAc(2)(high-Man) and GlcNAc(1-2)Man(3)FucXylGlcNAc(2)(GnM3FX and Gn2M3FX). When germinated in the presence of a glucosidase inhibitor (castanospermine or deoxynojirimycin), the amount of glucosyl high-Man-type structure increased and plant growth was inhibited. When germinated in the presence of a mannosidase inhibitor (swainsonine or deoxymannojirimycin), the amount of the high-Man-type structure increased and that of M3FX was low, and the growth was normal. In the presence of 2-acetamido 1, 2 di-deoxynojirimycin, those of GnM3FX and Gn2M3FX increased and the growth was normal. These results show that the N-glycan processing in both the endoplasmic reticulum (ER) and Golgi apparatus can be controlled artificially using glycosidase inhibitors, and that the glucosidase inhibitors could be useful for the study of the function of N-glycans in plants.  相似文献   

2.
Purification and properties of glucosidase I from mung bean seedlings   总被引:3,自引:0,他引:3  
The microsomal enzyme fraction from mung bean seedlings was found to contain glucosidase activity capable of releasing [3H]glucose from the glucose-labeled Glc3Man9GlcNAc. The enzymatic activity could be released in a soluble form by treating the microsomal particles with 1.5% Triton X-100. When the solubilized enzyme fraction was chromatographed on DE-52, it was possible to resolve glucosidase I activity (measured by the release of [3H]glucose from Glc3Man9GlcNAc) from glucosidase II (measured by release of [3H]glucose from Glc2Man9GlcNAc). The glucosidase I was purified about 200-fold by chromatography on hydroxylapatite, Sephadex G-200, dextran-Sepharose, and concanavalin A-Sepharose. The purified enzyme was free of glucosidase II and aryl-glucosidase activities. Only a single glucose residue could be released from the Glc3Man9GlcNAc by this purified enzyme and the other product was the Glc2Man9GlcNAc. Furthermore, this enzyme was inhibited in a dose-dependent manner by kojibiose, an alpha-1,2-linked glucose disaccharide, but not by other alpha-linked glucose disaccharides. These data indicate that this glucosidase is a specific alpha-1,2-glucosidase. The pH optimum for the glucosidase I was about 6.3 to 6.5, and no requirements for divalent cations were observed. The enzyme was inhibited strongly by the glucosidase processing inhibitors, castanospermine and deoxynojirimycin, and less strongly by the plant pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine. However, the enzyme was not inhibited by the mannosidase processing inhibitors, swainsonine, deoxymannojirimycin or 1,4-dideoxy-1,4-imino-D-mannitol. The stability of the enzyme under various conditions and other properties of the enzyme were determined.  相似文献   

3.
S Ga?án  J J Cazzulo  A J Parodi 《Biochemistry》1991,30(12):3098-3104
N-linked, high-mannose-type oligosaccharides lacking glucose residues may be transiently glucosylated directly from UDP-Glc in the endoplasmic reticulum of mammalian, plant, fungal, and protozoan cells. The products formed have been identified as N-linked Glc1Man5-9GlcNAc2 and glucosidase II is apparently the enzyme responsible for the in vivo deglucosylation of the compounds. As newly glucosylated glycoproteins are immediately deglucosylated, it is unknown whether transient glucosylation involves all or nearly all N-linked glycoproteins or if, on the contrary, it only affects a minor proportion of them. In order to evaluate the molar proportion of N-linked oligosaccharides that are glucosylated, cells of the trypanosomatid protozoan Trypanosoma cruzi (a parasite transferring Man9GlcNAc2 in protein N-glycosylation) were grown in the presence of [14C]glucose and concentrations of the glucosidase II inhibitors deoxynojirimycin and castanospermine that were more than 1000-fold higher than those required to produce a 50% inhibition of the T. cruzi enzyme. About 52-53% total N-linked oligosaccharides appeared to have glucose residues. The compounds were identified as Glc1Man7-9GlcNAc2. The same percentage was obtained when cells were pulsed-chased with [14C]glucose in the presence of deoxynojirimycin for 60 min. No evidence for the presence of an endomannosidase yielding GlcMan from the glycosylated compounds was obtained. As the average number of N-linked oligosaccharides per molecule in glycoproteins is higher than one, these results indicate that more than 52-53% of total glycoproteins are glucosylated and that transient glucosylation is a major event in the normal processing of glycoproteins.  相似文献   

4.
A melanoma proteoglycan model system has been used to examine the role of core protein asparagine-linked (N-linked) oligosaccharides in the transport and assembly of proteoglycan molecules. The use of agents which block discrete steps in the trimming and processing of core oligosaccharides (castanospermine, 1-deoxynojirimycin, N-methyldeoxynojirimycin, 1-deoxymannojirimycin, and swainsonine) demonstrates that removal of glucose residues from the N-linked oligosaccharides is required for the cell surface expression of a melanoma proteoglycan core protein and for the conversion of the core protein to a chondroitin sulfate proteoglycan. However, complete maturation of the oligosaccharides to a "complex" form is not required for these events. Treatment of M21 human melanoma cells with the glucosidase inhibitors castanospermine, 1-deoxynojirimycin, or N-methyldeoxynojirimycin results in a dose-dependent inhibition of glycosaminoglycan (GAG) addition to the melanoma antigen recognized by monoclonal antibody 9.2.27. In contrast, treatment with the mannosidase inhibitors 1-deoxymannojirimycin and swainsonine does not effect GAG addition. Identical results are obtained when the major histocompatibility complex class II antigen gamma chain proteoglycan is examined in inhibitor-treated melanoma and B-lymphoblastoid cells. These data, in conjunction with the known effects of the glucosidase and mannosidase inhibitors on the transport and secretion of other glycoproteins support the hypothesis that the addition, trimming, and processing of N-linked oligosaccharides is involved in the transport of certain proteoglycan core proteins to the site of GAG addition and to the cell surface.  相似文献   

5.
The effect of glucosidase and mannosidase inhibitors on the ER-associated degradation of tyrosinase was assessed in transiently transfected COS-7 cells. We found that the glucosidase inhibitors castanospermine and deoxynojirimycin had very little effect on tyrosinase degradation, whereas the mannosidase inhibitors deoxymannojirimycin and kifunensine significantly delayed the rate of tyrosinase degradation as measured by pulse-chase analysis. In addition, we show that tyrosinase degradation is sensitive to the proteasome inhibitor lactacystin and that tyrosinase associates with endogenous calnexin in COS-7 cells. Our data support a model of tyrosinase degradation that involves mannose trimming, calnexin association, and the retrograde transport of tyrosinase from the ER to the cytosol for proteasomal degradation. The pathways of tyrosinase degradation have important ramifications with regard to the exact types of antigenic epitopes that are presented to the immune system.  相似文献   

6.
The glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine were used to inhibit oligosaccharide processing in primary cultures of rat hepatocytes. Their effect on the glycosylation of alpha 1-proteinase inhibitor (alpha 1PI) and alpha 1-acid glycoprotein (alpha 1AGP) was studied. Of the three glucosidase inhibitors examined, 1-deoxynojirimycin inhibited not only oligosaccharide trimming but also glycosylation de novo of newly synthesized proteins, resulting in the formation of alpha 1PI with two and three (normally carrying three) and alpha 1AGP with two to five (normally carrying six) oligosaccharide side chains. In the presence of the glucosidase inhibitors, glucosylated high-mannose-type oligosaccharides accumulated. Whereas most of the endoglucosaminidase-H-sensitive oligosaccharides formed in the presence of 1-deoxynojirimycin contained only one glucose residue, N-methyl-1-deoxynojirimycin and castanospermine led mainly to the formation of oligosaccharides with three glucose residues. None of the three glucosidase inhibitors completely prevented the formation of complex-type oligosaccharides. Thus, in their presence, alpha 1PI and alpha 1AGP with a mixture of both high-mannose and complex-type oligosaccharides were secreted.  相似文献   

7.
Many of the proteins that are translocated into the endoplasmic reticulum are glycosylated with the addition of a 14-saccharide core unit (Glc3Man9GlcNAc2) to specific asparagine residues of the nascent polypeptide. Glucose residues are then removed by endoplasmic reticulum-located glucosidases, with diglucosylated and monoglucosylated intermediates being formed. In this study, we used a cell-free system constituted of wheat germ extract and bean microsomes to examine the role of glucose trimming in the structural maturation of phaseolin, a trimeric glycoprotein that accumulates in the protein storage vacuoles of bean seeds. Removal of glucose residues from the N-linked chains of phaseolin was blocked by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin. If glucose trimming was not allowed to occur, the assembly of phaseolin was accelerated. Conversely, polypeptides bearing partially trimmed glycans were unable to form trimers. The effect of castanospermine on the rate of assembly was much more pronounced for phaseolin polypeptides that have two glycans but was also evident when a single glycan chain was present, indicating that glycan clustering can modulate the effect of glucose trimming on the rate of trimer formation. Therefore, the position of glycan chains and their accessibility to the action of glucosidases can be fundamental elements in the control of the structural maturation of plant glycoproteins.  相似文献   

8.
The role of glucose trimming in the endoplasmic reticulum of Saccharomyces cerevisiae was investigated using glucosidase inhibitors and mutant strains devoid of glucosidases I and II. These glucosidases are responsible for removing glucose residues from the N-linked core oligosaccharides attached to newly synthesized polypeptide chains. In mammalian cells they participate together with calnexin, calreticulin and UDP-glucose:glycoprotein glucosyltransferase in the folding and quality control of newly synthesized glycoproteins. In S.cerevisiae, glucosidase II is encoded by the GLS2 gene, and glucosidase I, as suggested here, by the CWH41 gene. Using castanospermine (an alpha-glucosidase inhibitor) and yeast strains defective in glucosidase I, glucosidase II and BiP/Kar2p, it was demonstrated that cell wall synthesis depends on the two glucosidases and BiP/Kar2p. In double mutants with defects in both BiP/Kar2p and either of the glucosidases the phenotype was particularly clear: synthesis of 1,6-beta-glucan_a cell wall component_was reduced; the cell wall displayed abnormal morphology; the cells aggregated; and their growth was severely inhibited. No defects in protein folding or secretion could be detected. We concluded that glucose trimming in S.cerevisiae is necessary for proper cell wall synthesis, and that the glucosidases function synergistically with BiP/Kar2p in this process.  相似文献   

9.
We have studied the effects of inhibiting the initial steps in processing of asparagine-linked oligosaccharides on the formation of vesicular stomatitis virus (VSV). Our data show that conditions which prevent the removal of glucose can block the growth of this virus. Our conclusion that inhibition of VSV synthesis is due specifically to an effect on the ability of the virus glycoprotein, G, to mature to a correct functional conformation is based on the following observations: (i) two drugs, deoxynojirimycin and castanospermine , both of which selectively inhibit the processing glucosidases, affected virus growth; (ii) only one of the two strains (San Juan and Orsay ) of VSV tested was affected and that strain, VSV(San Juan), is known to have a G protein highly sensitive to alterations in oligosaccharide structure; (iii) the effect was to make the formation of VSV(San Juan) temperature-sensitive, a result previously observed with alterations in the oligosaccharides on G protein; (iv) a cell variant missing glucosidase II activity also became temperature-sensitive in its ability to produce VSV(San Juan) but not VSV( Orsay ). Although inhibition of glucosidase activity by 1- deoxynojirimycin caused a 10-fold drop in virion formation, transport of G protein to the plasma membrane was not altered. The growth of VSV(San Juan) at 40 degrees C was not affected when subsequent steps in the processing pathway were blocked. These data indicate that by the time the glucose residues are removed G has attained a stable conformation.  相似文献   

10.
Rat hepatic lipase is a glycoprotein bearing two N-linked oligosaccharide chains. The importance of glycosylation in the secretion of hepatic lipase was studied using freshly isolated rat hepatocytes. Various inhibitors of oligosaccharide synthesis and processing were used at concentrations that selectively interfere with protein glycosylation. Secretion of hepatic lipase activity was abolished by tunicamycin, castanospermine, and N-methyldeoxynojirimycin. No evidence was found by ELISA or Western blotting for secretion of inactive protein. Inhibition of secretion became apparent after a 30-min lag, corresponding to the time of intracellular transport of pre-existing protein. Simultaneously, intracellular hepatic lipase activity ws depleted. Secretion of hepatic lipase protein and activity was not affected by deoxymannojirimycin and swainsonine. Upon SDS-polyacrylamide gel electrophoresis, hepatic lipase secretion by deoxymannojirimycin- or swainsonine-treated cells showed an apparent Mr of 53 kDa and 55 kDa, respectively, which was distinct from hepatic lipase secreted by untreated cells (Mr = 58 kDa). We conclude that glycosylation and subsequent oligosaccharide processing play a permissive role in the secretion of hepatic lipase. As secretion is prevented by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin, but not by inhibitors of subsequent oligosaccharide trimming, the removal of glucose residues from the high-mannose oligosaccharide intermediate in the rough endoplasmic reticulum appears the determining step.  相似文献   

11.
Glucosidase II was purified approximately 1700-fold to homogeneity from Triton X-100 extracts of mung bean microsomes. A single band with a molecular mass of 110 kDa was seen on sodium dodecyl sulfate gels. This band was susceptible to digestion by endoglucosaminidase H or peptide glycosidase F, and the change in mobility of the treated protein indicated the loss of one or two oligosaccharide chains. By gel filtration, the native enzyme was estimated to have a molecular mass of about 220 kDa, suggesting it was composed of two identical subunits. Glucosidase II showed a broad pH optima between 6.8 and 7.5 with reasonable activity even at 8.5, but there was almost no activity below pH 6.0. The purified enzyme could use p-nitrophenyl-alpha-D-glucopyranoside as a substrate but was also active with a number of glucose-containing high-mannose oligosaccharides. Glc2Man9GlcNAc was the best substrate while activity was significantly reduced when several mannose residues were removed, i.e. Glc2Man7-GlcNAc. The rate of activity was lowest with Glc1Man9GlcNAc, demonstrating that the innermost glucose is released the slowest. Evidence that the enzyme is specific for alpha 1,3-glucosidic linkages is shown by the fact that its activity on Glc2Man9GlcNAc was inhibited by nigerose, an alpha 1,3-linked glucose disaccharide, but not by alpha 1,2 (kojibiose)-, alpha 1,4(maltose)-, or alpha 1,6 (isomaltose)-linked glucose disaccharides. Glucosidase II was strongly inhibited by the glucosidase processing inhibitors deoxynojirimycin and 2,6-dideoxy-2,6-imino-7-O-(beta-D- glucopyranosyl)-D-glycero-L-guloheptitol, but less strongly by castanospermine and not at all by australine. Polyclonal antibodies prepared against the mung bean glucosidase II reacted with a 95-kDa protein from suspension-cultured soybean cells that also showed glucosidase II activity. Soybean cells were labeled with either [2-3H]mannose or [6-3H]galactose, and the glucosidase II was isolated by immunoprecipitation. Essentially all of the radioactive mannose was released from the protein by treatment with endoglucosaminidase H. The labeled oligosaccharide(s) released by endoglucosaminidase H was isolated and characterized by gel filtration and by treatment with various enzymes. The major oligosaccharide chain on the soybean glucosidase II appeared to be a Man9(GlcNAc)2 with small amounts of Glc1Man9(GlcNAc)2.  相似文献   

12.
Inhibition of HIV replication by amino-sugar derivatives   总被引:7,自引:0,他引:7  
The plant alkaloids castanospermine, dihydroxymethyldihydroxypyrrolidine and deoxynojirimycin have recently been shown to have potential anti-HIV activity [(1987) Proc. Natl. Acad. Sci. USA 84, 8120-8124; (1987) Nature 330, 74-77; (1987) Lancet i, 1025-1026]. They are thought to act by inhibiting alpha-glucosidase I, an enzyme involved in the processing of N-linked oligosaccharides on glycoproteins. We report here the relative efficacy of a spectrum of amino-sugar derivatives as inhibition of HIV cytopathicity. Several alpha-glucosidase inhibitors and alpha-fucosidase inhibitors were found to be active at concentrations which were non-cytotoxic.  相似文献   

13.
K P Kearse  D B Williams    A Singer 《The EMBO journal》1994,13(16):3678-3686
The alpha beta T-cell antigen receptor (TCR) is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER). In this report we have examined the role of oligosaccharide processing on survival and assembly of nascent TCR proteins within the ER and their associations with molecular chaperone proteins important in TCR assembly. We found that treatment of BW5147 T cells with the glucosidase inhibitor castanospermine resulted in markedly accelerated degradation of nascent TCR alpha proteins with a half-life of approximately 20 min. Accelerated degradation was unique to TCR alpha proteins, as the stability of nascent TCR beta and CD3 gamma,epsilon chains was unaltered. Consistent with a requirement for glucose (Glc) trimming for survival of nascent TCR alpha proteins within the ER, we found that newly synthesized TCR alpha chains were innately unstable in the glucosidase II-deficient BW5147 mutant cell line PHAR2.7. In addition to destabilizing nascent TCR alpha proteins we found that persistence of Glc residues on core oligosaccharides markedly interfered with association of both TCR alpha and TCR beta glycoproteins with the molecular chaperone calnexin. Finally, using 2B4 T hybridoma cells in which TCR complexes are efficiently assembled, we found that rapid degradation of nascent TCR alpha proteins induced by impaired Glc trimming severely limits assembly of TCR alpha proteins with TCR beta proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effect of castanospermine on the processing of N-linked oligosaccharides was examined in the parent mouse lymphoma cell line and in a mutant cell line that lacks glucosidase II. When the parent cell line was grown in the presence of castanospermine at 100 micrograms/ml, glucose-containing high-mannose oligosaccharides were obtained that were not found in the absence of inhibitor. These oligosaccharides bound tightly to concanavalin A-Sepharose and were eluted in the same position as oligosaccharides from the mutant cells grown in the absence or presence of the alkaloid. The castanospermine-induced oligosaccharides were characterized by gel filtration on Bio-Gel P-4, by h.p.l.c. analysis, by enzymic digestions and by methylation analysis of [3H]mannose-labelled and [3H]galactose-labelled oligosaccharides. The major oligosaccharide released by endoglucosaminidase H in either parent or mutant cells grown in castanospermine was a Glc3Man7GlcNAc, with smaller amounts of Glc3Man8GlcNAc and Glc3Man9GlcNAc. On the other hand, in the absence of castanospermine the mutant produces mostly Glc2Man7GlcNAc. In addition to the above oligosaccharides, castanospermine stimulated the formation of an endoglucosaminidase H-resistant oligosaccharide in both cell lines. This oligosaccharide was characterized as a Glc2Man5GlcNAc2 (i.e., Glc(1,2)Glc(1,3)Man(1,2)Man(1,2)Man(1,3)[Man(1,6)]Man-GlcNAc-GlcNAc). Castanospermine was tested directly on glucosidase I and glucosidase II in lymphoma cell extracts by using [Glc-3H]Glc3Man9GlcNAc and [Glc-3H]Glc2Man9GlcNAc as substrates. Castanospermine was a potent inhibitor of both activities, but glucosidase I appeared to be more sensitive to inhibition.  相似文献   

15.
The relationship between maturation of lipoprotein lipase (LPL) and its translocation from the endoplasmic reticulum (ER) to the Golgi complex was determined by measuring lipolytic activity under conditions preventing transport of the enzyme from the ER to the Golgi compartment. In the presence of brefeldin A, a reagent that inhibits movement of proteins from the ER and causes the disassembly of the Golgi complex, pro-5 Chinese hamster ovary cells accumulated catalytically active LPL, while secretion of the enzyme was effectively blocked. LPL retained intracellularly by brefeldin A treatment possessed oligosaccharide chains that were processed to the complex form by the Golgi enzymes redistributed into the ER. At 16 degrees C, a condition disrupting protein transport to the cis-Golgi, the retained enzyme again remained catalytically active although the oligosaccharides remained in the high mannose form. Lastly, attachment of the specific ER retention signal KDEL (Lys-Asp-Glu-Leu) to the carboxyl terminus of LPL also resulted in intracellularly retained enzyme that was fully active. The importance of oligosaccharide processing for attainment of LPL catalytic activity in vitro was also determined. LPL was active and secreted when trimming of the mannose residues was inhibited by deoxymannojirimycin and when addition of complex sugars was blocked using Chinese hamster ovary mutants (lec1 and lec2), indicating that these processing events are not necessary for the expression of a functional enzyme. However, blocking glucose removal by glucosidase inhibitors (castanospermine and N-methyl-deoxynojirimycin) resulted in a significant reduction in LPL specific activity and secretion. Thus, glucose trimming of LPL oligosaccharides is essential for enzyme activation; however, further oligosaccharide processing or translocation of the enzyme to the cis-Golgi is not required for full expression of lipolytic activity in vitro.  相似文献   

16.
A second indolizidine alkaloid, epimeric with castanospermine, has been isolated from seeds of the Australian tree Castanospermum australe. The structure was established as 6-epicastanospermine by proton and carbon-13 nuclear magnetic resonance spectroscopy and mass spectrometry. 6-Epicastanospermine was found to be a potent inhibitor of amyloglucosidase, (an exo-1,4,-α-glucosidase), a weak inhibitor of β-galactosidase, and not to inhibit β-glucosidase and α-mannosidase. These results indicate that glycosidase inhibitory activity cannot be predicted by comparison of the structure and stereochemistry with the appropriate sugars, since 6-epicastanospermine is an analog of mannose and not of glucose. The inhibition of amyloglucosidase was found to be competitive and to be more effective at higher pH values. Castanospermine and 6-epicastanospermine differed in their effect upon the mung bean processing enzymes, glucosidase I and II, in that the former is a potent inhibitor whereas the latter is a very poor inhibitor. Subtle alterations in stereochemistry of these alkaloids can therefore produce significant changes in their biological activity.  相似文献   

17.
Castanospermine, a plant alkaloid that inhibits the glycoprotein processing enzyme glucosidase I, has been used to inhibit N-linked oligosaccharide modification, resulting in the production of glycoproteins having Glc3Man7-9(GlcNAc)2 oligosaccharides. This alkaloid caused a significant inhibition of LDL endocytosis in cultured primate smooth muscle cells and human skin fibroblasts. At an optimum concentration of 250 micrograms/mL, castanospermine caused a 40% decrease in cell surface receptor-mediated LDL binding at 4 degrees C, with no apparent change in affinity. Further, the inhibitor had no direct effect on LDL metabolism. This inhibition of LDL receptor expression and function occurred only when the drug was present during de novo receptor synthesis, i.e., during up-regulation. Although the number of cell surface LDL receptors was significantly reduced in the presence of castanospermine, the total number of receptors in the cell was only slightly reduced, indicating that castanospermine induced a redistribution rather than a reduction in the number of receptors. Similarly, subcellular fractionation studies confirmed that castanospermine treatment of fibroblasts results in an altered distribution of receptor activity compared with controls. These findings are consistent with the conclusion that the decrease in specific LDL binding to cells grown in the presence of castanospermine is due to intracellular redistribution of the LDL receptor so that more receptor remains in internal compartments as a result of a diminished rate of transport.  相似文献   

18.
The role of trimming and processing of N-linked oligosaccharides on the cell surface expression of the melanoma vitronectin receptor, a member of the integrin family of cell adhesion receptors, was examined by using specific glucosidase and mannosidase inhibitors. Inhibition of glucosidases I and II by castanospermine or N-methyldeoxynojirimycin delayed the vitronectin receptor alpha/beta chain heterodimer assembly and alpha chain cleavage and resulted in a decrease in the level of expression cell surface receptor. Conversely, the vitronectin receptor synthesized in the presence of the mannosidase I and II inhibitors, 1-deoxymannojirimycin and swainsonine, was transported normally to the cell surface with its alpha chain N-linked oligosaccharides in an endoglycosidase H-sensitive form. In the presence of swainsonine, time course studies of the cell surface replacement of control, endoglycosidase H-resistant receptor with an endoglycosidase H-sensitive form demonstrated a vitronectin receptor half-life of approximately 15-16 h. These studies provide evidence that the rates of assembly, proteolytic cleavage, and cell surface expression of the melanoma vitronectin receptor are dependent on the initial trimming of glucosyl residues from the alpha chain N-linked oligosaccharides.  相似文献   

19.
Castanospermine (1,6,7,8-tetrahydroxyoctahydroindolizine) is an indolizidine alkaloid that was isolated from the Australian plant, Castanospermum australe. This alkaloid was found to be a potent inhibitor of lysosomal alpha- and beta-glucosidases. In this report, the mechanism of inhibition of amyloglucosidase (an exo-1,4-alpha-glucosidase) and almond emulsin beta-glucosidase was examined. Castanospermine proved to be a competitive inhibitor of amyloglucosidase at both pH 4.5 and 6.0 when assayed with the p-nitrophenyl-alpha-D-glucoside. It was also a competitive inhibitor of almond emulsin beta-glucosidase at pH 6.5, but in this case previous studies had shown that inhibition was of the mixed type at pH 4.5 to 5.0. Th pH of the incubation mixture had a marked effect on the inhibition. Thus, in all cases, castanospermine was a much better inhibitor at pH 6.0 to 6.5 than it was at lower pH values. The pK for castanospermine was found to be 6.09, indicating that the alkaloid was probably more active in the unprotonated form. This was also suggested by the fact that the N-oxide of castanospermine, while still a competitive inhibitor, was 50 to 100 times less active than was castanospermine, and its activity was not markedly altered by pH. These results probably explain why castanospermine is a good inhibitor of the glycoprotein processing enzyme, glucosidase I, since this is a neutral enzyme.  相似文献   

20.
In this study, we compared the effects of 2,6-dideoxy-2,6-imino-7-O-(beta-D-glucopyranosyl)-D-glycero-L-gulohep titol (MDL) to those of the glucosidase I inhibitor, castanospermine, on the purified processing enzymes glucosidases I and II. WE also compared the effects of these two inhibitors on glycoprotein processing in cell culture using influenza virus-infected Madin-Darby canine kidney cells as a model system. With the purified processing enzymes, castanospermine was a better inhibitor of glucosidase I than of glucosidase II, whereas MDL is more effective against glucosidase II than glucosidase I. In cell culture at the appropriate dose, MDL also preferentially affected glucosidase II. Thus, at 250 micrograms/ml MDL, the major [3H]glucose-labeled (or [3H]mannose-labeled) glycopeptide from the viral hemagglutinin was susceptible to endoglucosaminidase H, and the oligosaccharide liberated by this treatment was characterized as a Glc2Man7-9GlcNAc on the basis of size, resistance to digestion by glucosidase I (but sensitivity to glucosidase II), methylation analysis, and Smith degradation studies. These data indicate that at appropriate concentrations of MDL (250 micrograms/ml), one can selectively inhibit glucosidase II in Madin-Darby canine kidney cells. However, at higher concentrations of inhibitor (500 micrograms/ml), both enzymes are apparently affected. Since MDL did not greatly inhibit the synthesis of lipid-linked saccharides or the synthesis of protein or RNA, it should be a useful tool for studies on the biosynthesis and role of N-linked oligosaccharides in glycoprotein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号