首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of diabetes mellitus and circadian rhythm on pharmacokinetics or pharmacodynamics of drugs have been previously separately reviewed. In our previous study, a circadian rhythm has been described in the pharmacokinetics of MTX in streptozotocin-induced diabetes mellitus (SIDM) rats. The aim of the present study was to investigate the effects of circadian rhythm on the toxicity of MTX in SIDM rats. The hematologic parameters and serum folic acid levels were measured in control and SIDM groups before and after MTX administration to evaluate its toxicity. We observed that circadian rhythm in basal peripheral WBC counts disappeared after MTX administration in the first hour and were phase shifted on the fifth day. Circadian variations were not observed in the other blood cells. One hour after MTX administration, folic acid levels were high in both groups. However, a circadian rhythm was present only in the diabetic group. The alteration in the rhythm of WBC counts in diabetic rats may originate not only from the effect of MTX but also physiological alterations due to diabetes and/or the varying cell cycle entry rates in the hematopoetic stem cells.  相似文献   

2.
Different studies have reported that daytime feeding entrains the circadian rhythm of corticosterone secretion in rats. However, it remained unclear whether calorie restriction or daytime feeding access have an effect. The aim of our study is to evaluate the effect of an 8-h daytime feeding access on the circadian rhythm of plasma corticosterone. Eleven adult male Wistar rats were assigned to two different conditions of access to food: ad lib feeding for one week and daytime feeding for the following two weeks. On the 7th, 14th and 21st day, blood samples were collected every 4 h from 08:00 to 04:00. Food intake and body weight were recorded daily. During daytime feeding, rats ingested 88% of the amount of food ingested over 24 h in the ad lib feeding period. However, body weight increased significantly from the first day to the end of experiment. Peak plasma corticosterone was 12 h shifted during daytime feeding period compared to the ad lib condition. This study showed that an 8-h daytime feeding entrained the circadian rhythm of plasma corticosterone without body weight loss or severe food restriction.  相似文献   

3.
Different studies have reported that daytime feeding entrains the circadian rhythm of corticosterone secretion in rats. However, it remained unclear whether calorie restriction or daytime feeding access have an effect. The aim of our study is to evaluate the effect of an 8-h daytime feeding access on the circadian rhythm of plasma corticosterone. Eleven adult male Wistar rats were assigned to two different conditions of access to food: ad lib feeding for one week and daytime feeding for the following two weeks. On the 7th, 14th and 21st day, blood samples were collected every 4 h from 08:00 to 04:00. Food intake and body weight were recorded daily. During daytime feeding, rats ingested 88% of the amount of food ingested over 24 h in the ad lib feeding period. However, body weight increased significantly from the first day to the end of experiment. Peak plasma corticosterone was 12 h shifted during daytime feeding period compared to the ad lib condition. This study showed that an 8-h daytime feeding entrained the circadian rhythm of plasma corticosterone without body weight loss or severe food restriction.  相似文献   

4.
Circadian rhythm of corticosterone in diabetic rats   总被引:1,自引:0,他引:1  
We proposed that the circadian rhythm of corticosterone in diabetic rats would have a different pattern than that in non-diabetic control rats. To test this hypothesis, 20 male Sprague-Dawley rats were given ad libitum access to a stock diet and housed individually in a light and temperature controlled room. Ten rats were made diabetic by two subcutaneous injections of streptozotocin. Ten rats which were not injected served as controls. Thirteen days after induction of the diabetes, tail blood samples were taken every 4 h for 24 h. Plasma corticosterone levels were significantly higher in diabetic rats than in control rats at 3 time points during the light cycle; however, concentrations were similar during the dark cycle. We speculate that diabetes may cause alterations in the steroid feedback mechanism to the hypothalamus and/or pituitary, resulting in an abnormal circadian rhythm of plasma corticosterone.  相似文献   

5.
Administration-time differences of gentamicin pharmacokinetics were studied by crossover design after a single intravenous administration of gentamicin (80 mg) to 10 human subjects at 09:00 (morning time) and 22:00 (nighttime). The profiles of serum gentamicin concentration showed a significant statistical difference between 09:00 and 22:00, suggesting circadian variations of pharmacokinetic behaviors. A significant circadian rhythm of pharmacokinetic parameters as a function of time of day was noted in human subjects, showing lower total body clearance Clt and higher serum area under the curve (AUC) when given at nighttime. The half-life t1/2 was shorter in the morning (2.82 h +/- 0.43 h) when compared to the nighttime (2.97 h +/- 0.36 h), but the difference was not statistically significant. The AUC was significantly greater in the morning (23.4 +/- 3.84 micrograms-h/mL) than that in the nighttime (26.3 +/- 5.79 micrograms-h/mL) (p < .05), most likely because the Clt was significantly higher when gentamicin was given in the morning (3.51 +/- 0.57 L/h) versus in the nighttime (3.18 +/- 0.65 L/h). Although the volume of distribution Vd decreased when given at nighttime, it was independent of the dosing time. From this study, there was an administration-time difference of gentamicin pharmacokinetics in human beings. The optimized dosing regimen of gentamicin can be decided by considering circadian rhythm and rest-activity routine so that minimized toxicity and effective therapy are established for patients. The current findings also can be applied to other drugs with circadian rhythms of pharmacokinetics and narrow therapeutic windows in clinical chronotherapeutics.  相似文献   

6.
Experiments were conducted in male rats to study the effects of streptozotocin-induced diabetes on circadian rhythms of (a) plasma corticosterone concentrations; (b) motor activity; and (c) metabolic patterns. Animals were entrained to LD cycles of 12: 12 hr and fed ad libitum.

A daily rhythm of plasma corticosterone concentrations was found in controls animals with peak levels at 2400 hr and low values during the remaining hours. This rhythm was statistically confirmed by the cosinor method and had an amplitude of 3.37μg/100 ml and the acrophase at 100 hr. A loss of the normal circadian variation was observed in diabetic animals, with a nadir at the onset of light period and high values throughout the remaining hours; cosinor analysis of these data showed no circadian rhythm, delete and a higher mean level than controls.

As expected, normal rats presented most of their motor activity during the dark period with 80+ of total daily activity; the cosinor method demonstrated a circadian rhythm with an amplitude of 60+ of the mean level and the acrophase at 0852 hr. Both diabetic and control rats showed a similar activity during the light phase, but diabetic animals had less activity than controls during the night and their percentage of total daily activity was similar in both phases of the LD cycle (50+ for each one). With the cosinor method we were able to show the persistence of a circadian rhythm in the motor activity of diabetic rats, but with a mesor and amplitude lower than in controls (amplitude rested at 60+ of the mean level) and its acrophase advanced to 0148 hr.

The metabolic activity pattern of diabetic rats also changed: whereas controls showed a greater metabolic activity during the night (70+ food; 82+ water; 54+ urine; 67+ faeces), diabetics did not show differences between both phases of the LD cycle. Water ingested and urine excreted by the diabetic group were higher than normal during light and dark periods; food consumed and faeces excreted were higher than controls only in the light phase.

These data suggest that alterations in circadian rhythms of plasma corticosterone and motor activity are consecutive to the loss of the feeding circadian pattern, due to polyphagia and polydipsia showed by these animals, which need to extend intakes during the light and dark phases.  相似文献   

7.
Corticosterone is thought to be the main glucocorticoid secreted in response to stressful exercise, while melatonin buffers the adverse immunological effects of stress. The present work was aimed to evaluate whether swimming-exercise-induced stress leads to changes in the chronobiology parameters of the circadian rhythms of melatonin and corticosterone, and in the number and phagocytosis of peritoneal macrophages in 3-month-old male Wistar rats. The animals were subjected to a physical activity trial consisting of 2 h of free swimming. Radioimmunoassay was used to determine the plasma levels of melatonin and corticosterone. Phagocytosis was measured by the latex-bead phagocytosis index (PI), i.e., the number of latex beads ingested by 100 macrophages, the phagocytosis percentage (PP), i.e., the percentage of cells that had phagocytosed at least one latex bead, and the phagocytosis efficiency (PE), i.e., the ratio PI: PP which indicates how effectively the phagocytes ingested the particles. Stress significantly decreased the MESOR and amplitude of the melatonin rhythm, and significantly increased the MESOR of the corticosterone rhythm. The control animals' peritoneal macrophage number and PI showed a circadian rhythm with maxima at 02:00 and 03:00, respectively. The stressed group displayed higher values of PI than the controls at most hours of the night, but the number of cells in the peritoneal cavity was practically the same at all hours studied. These data confirm that melatonin and corticosterone act as modulators of the innate immune response, and that the circadian rhythm of the two hormones are altered in situations of stress.  相似文献   

8.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8-10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

9.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8–10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

10.
The effects of chronic (14 day) intracerebroventricular infusion of various amounts of ovine corticotropin-releasing factor (oCRF) on the circadian blood corticosterone rhythm in male rats were examined. Control (saline-infused) rats showed distinct blood corticosterone rhythms over 48 h with nadirs at 0900 h and peaks at 2100 h on days 6-7 and 13-14. oCRF at 3 pmol/h did not affect the circadian corticosterone rhythm on these days. When oCRF was infused at a rate of 12 pmol/h, blood corticosterone was increased throughout the 48 h periods. A significant circadian rhythm remained at days 6-7, but continuous infusion for an additional 7 days disrupted the rhythm. Higher doses of oCRF (48 and 240 pmol/h) obliterated the rhythm during both periods; the disruption was characterized by an increase in corticosterone during the lights-on period without a substantial change in the evening maximum. Thus, the blood corticosterone concentration was eventually confined within a narrow range, not exceeding the normal circadian peak, over a wide dose range of centrally administered CRF. Significant effects of oCRF on body and adrenal weight were observed only at the two highest doses used. These findings may provide some insight into the state of the hypothalamic-pituitary-adrenal axis in animals exposed to chronic stress and in patients with depression.  相似文献   

11.
Circadian rhythmic changes in blood corticosterone concentration were studied in rats after resection of the jejunum or the ileum. The rats with ideal resection showed a normal corticosterone rhythm, with a peak at the beginning of the dark period when they were fed ad libitum, and the phase of the rhythm shifted when the feeding time was restricted to a specific time of day during the light period. The rats with jejunal resection also showed a similar corticosterone rhythm, but its amplitude was lower compared to that of the rats with ideal resection. There were no differences in body weight and the circadian rhythm of blood urea concentration between two groups of rats. We conclude that the jejunum is an important site where the sense of food is received as an entraining signal for the corticosterone rhythm.  相似文献   

12.
There is increasing awareness of the link between impaired circadian clocks and multiple metabolic diseases. However, the impairment of the circadian clock by type 2 diabetes has not been fully elucidated. To understand whether and how the function of circadian clock is impaired under the diabetic condition, we examined not only the expression of circadian genes in the heart and pineal gland but also the behavioral rhythm of type 2 diabetic and control rats in both the nighttime restricted feeding (NRF) and daytime restricted feeding (DRF) conditions. In the NRF condition, the circadian expression of clock genes in the heart and pineal gland was conserved in the diabetic rats, being similar to that in the control rats. DRF shifted the circadian phases of peripheral clock genes more efficiently in the diabetic rats than those in the control rats. Moreover, the activity rhythm of rats in the diabetic group was completely shifted from the dark phase to the light phase after 5 days of DRF treatment, whereas the activity rhythm of rats in the control group was still under the control of the suprachiasmatic nucleus (SCN) after the same DRF treatment. Furthermore, the serum glucose rhythm of type 2 diabetic rats was also shifted and controlled by the external feeding schedule, ignoring the SCN rhythm. Therefore, DRF shows stronger effect on the reentrainment of circadian rhythm in the type 2 diabetic rats, suggesting that the circadian system in diabetes is unstable and more easily shifted by feeding stimuli.  相似文献   

13.
The present study examined whether mild restraint stress occurring at the same time each day would entrain an anticipatory peak in the circadian plasma corticosterone rhythm associated with the time of stress. Rats were stressed by tube restraint for 2 h in the morning on 23 consecutive days, and plasma corticosterone concentrations were measured at 4h intervals over the next 2 days. Plasma corticosterone patterns were similar in control and restrained rats, and no anticipatory corticosterone peak occurred in stressed rats before the time when stress would have occurred. However, periodic regression analysis of the data indicated that timed stress did advance the acrophase of the circadian corticosterone rhythm by 1.7 h. This effect was minimal and could not explain the anticipatory rise in corticosterone concentrations seen in restricted feeding paradigms. Thus, it is unlikely that any stress associated with restricted feeding entrains corticosterone rhythms to anticipate the time of feeding, and some aspect of feeding per se is likely involved in producing the corticosterone peak that anticipates the time of restricted feeding.  相似文献   

14.
The aim of this study was to verify, by means of functional methods, whether the circadian rhythm changes adrenergic response patterns in the epididymal half of the vas deferens isolated from control rats as well as from rats submitted to acute stress. The experiments were performed at 9:00 a.m., 3:00 p.m., 9:00 p.m., and 3:00 a.m. The results showed a light-dark dependent variation of the adrenergic response pattern on organs isolated from control as well as from stressed rats. In the control group, only the phenylephrine sensitivity was changed throughout the circadian rhythm. Under the stress condition, both norepinephrine and phenylephrine response patterns were changed, mainly during darkness. The maximal contractile response to both alpha- and beta-agonist and alpha1-agonist was increased in the dark phase, corresponding to high plasmatic concentrations of endogenous melatonin. The vas deferens isolated from stressed rats during the light phase simultaneously incubated with exogenous melatonin showed the same pattern of response obtained in the dark phase, thus indicating a peripheric action of melatonin on this organ. Therefore, the circadian rhythms are important to the adrenergic response pattern in rat vas deferens from both control and stressed rats. In conclusion, we suggest a melatonin modulation on alpha1-postsynaptic adrenergic response in the rat vas deferens.  相似文献   

15.
The circadian rhythm of serum corticosterone was assessed in rats entrained to a 12:12 LD cycle and treated with tricyclic imipramine (25 mg/kg/day) via osmotic pumps for a period of 14 days; urinary excretion of catecholamines, serotonin and their catabolites was also assessed. We observed that imipramine did not modify the phase position of the corticosterone rhythm but rather lowered the animal's responsiveness as shown by the lower peak of corticosterone at 2000 and by the smaller amplitude of its circadian rhythm; moreover imipramine had no effect on urinary excretion of catecholamines, serotonin and their catabolites during LD cycle.  相似文献   

16.
To augment the limited work reported in the literature regarding testing of the hormonal temporal synergism hypothesis in Syrian hamsters (Joseph MM, Meier AH. Proc Soc Exp Biol Med. 1974;146:1150-5), a large experiment with female hamsters was conducted. Forty-eight received corticosterone at 18:00 h on January 21, 23, 25, 27, and 29 and ovine prolactin at one of six times of day beginning January 22 for 8 days; 36 received saline (at 18:00) and prolactin at one of the six times of day for 8 days; 35 received only prolactin at one of the six times of day for 8 days; and 16 received no injections. Twelve hamsters receiving corticosterone and prolactin and eight uninjected hamsters were on running wheels. The corticosterone and prolactin group not on wheels had a body weight gain and no circadian rhythm of weight gain, but did have circadian rhythms of response in organ weight, per 100 g of body weight, and in weights of fat pads and uteri. The corticosterone and prolactin group with access to running wheels gained in body weight and had larger ovaries and smaller fat pads. Hamsters receiving saline and prolactin had a body weight gain, but had no circadian rhythms of response in organ weights. The hamsters receiving only prolactin gained in body weight but had no rhythms of response, except for unexpected circadian rhythms in body weight gain and weights of fat pads. The uninjected hamsters had a modest weight gain. Most or all hamsters with access to running wheels freeran, and the corticosterone injections did not appear to synchronize the locomotor activity rhythms. In conclusion, corticosterone does interact with the injection time effect of prolactin on weights of fat pads, paired ovaries, and uteri. The mechanism of that effect, in terms of circadian rhythm theory, is unclear.  相似文献   

17.
To augment the limited work reported in the literature regarding testing of the hormonal temporal synergism hypothesis in Syrian hamsters (Joseph MM, Meier AH. Proc Soc Exp Biol Med. 1974;146:1150-5), a large experiment with female hamsters was conducted. Forty-eight received corticosterone at 18:00 h on January 21, 23, 25, 27, and 29 and ovine prolactin at one of six times of day beginning January 22 for 8 days; 36 received saline (at 18:00) and prolactin at one of the six times of day for 8 days; 35 received only prolactin at one of the six times of day for 8 days; and 16 received no injections. Twelve hamsters receiving corticosterone and prolactin and eight uninjected hamsters were on running wheels. The corticosterone and prolactin group not on wheels had a body weight gain and no circadian rhythm of weight gain, but did have circadian rhythms of response in organ weight, per 100 g of body weight, and in weights of fat pads and uteri. The corticosterone and prolactin group with access to running wheels gained in body weight and had larger ovaries and smaller fat pads. Hamsters receiving saline and prolactin had a body weight gain, but had no circadian rhythms of response in organ weights. The hamsters receiving only prolactin gained in body weight but had no rhythms of response, except for unexpected circadian rhythms in body weight gain and weights of fat pads. The uninjected hamsters had a modest weight gain. Most or all hamsters with access to running wheels freeran, and the corticosterone injections did not appear to synchronize the locomotor activity rhythms. In conclusion, corticosterone does interact with the injection time effect of prolactin on weights of fat pads, paired ovaries, and uteri. The mechanism of that effect, in terms of circadian rhythm theory, is unclear.  相似文献   

18.
Hypertension and noninsulin-dependent diabetes mellitus are usually associated with marked glucose intolerance. Hypertensive and even nonhypertensive diabetic individuals display disturbances of the normal circadian blood pressure rhythm. However, little is known about circadian changes of the glucose uptake in muscle and fat cells, the major glucose utilizing tissues. Therefore, we investigated circadian rhythms of glucose uptake in primary muscle and fat cell cultures of hypertensive and type II diabetic rats and their respective control strains. 2-Deoxy-D-(1-3H)glucose uptake was measured over 48 h after synchronization of cells by means of medium change with and without addition of insulin, phloretine, and/or staurosporine. The circadian changes of glucose uptake were assessed by fitting cosine curves to the uptake values. Insulin stimulation of deoxyglucose uptake was only present in control animals, not in hypertensive and diabetic rats. Deoxyglucose uptake displayed a circadian rhythm in control animals, and was markedly disturbed in hypertensive and diabetic animals. Blocking of glucose transporters by phloretine abolished the circadian pattern of deoxyglucose uptake indicating a role of glucose transporters in its generation. Inhibition of kinases by staurosporine inhibited the insulin-stimulated deoxyglucose uptake, but did not dampen the circadian rhythmicity of basal deoxyglucose uptake. The generation of the circadian rhythm of glucose uptake in muscle and fat cell cultures is therefore probably insulin independent and independent of protein kinases. In summary, our results show for the first time: (a) a circadian rhythm of deoxyglucose uptake in glucose utilizing muscle and fat cells in vitro, (b) a disruption of this rhythm in cells of hypertensive and diabetic rats.  相似文献   

19.
Circadian rhythms in physiological processes may affect pharmacological actions of drugs. The purpose of this study was to determine whether pharmacokinetics or acute lethality (LD 50) of norfloxacin, exhibited circadian rhythmicity. Female Sprague- Dawley prepuberal rats (weight 115.8 ± 10.2 g) synchronized with a 12-h-light/ 12-h-dark cycle (lights on 7:00h) were used throughout the study. Norfloxacin pharmacokinetics after intraperitoneal administration at 4:00, 10:00, 16:00 and 22:00h was characterized. Intraperitoneal norfloxacin LD 50 was administered at 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00 h. Pharmacokinetic parameters and lethality percentages were analyzed by the cosinor method for the presence of circadian rhythmicity. The results showed evidence of circadian rhythmicity for norfloxacin k abs, t ½abs, t max, MRT abs, Cl t /f and AUC. Absorption was higher when the drug was administered during the rest (16:00 h) period, meanwhile elimination was higher when administered during the activity (22:00 h) period. No rhythmicity was determined for norfloxacin lethality. It is concluded that, in this study, time of administration modifies the pharmacokinetics of norfloxacin.  相似文献   

20.
Malate dehydrogenase activity and soluble protein content in testes from rats exposed to a 14:00 h light:10:00 h dark photoperiod, have been determined every two or four hours over a 24 hour period in 5, 15, 25 and 120 day-old rats. By using the Cosinor method, the ontogeny of an unimodal rhythm was studied for MDH activity and soluble protein content in testis. In 5 and 15 day-old rats, the MDH acrophases were recorded around 19:00 h and 17:00 h, respectively. Rats aged 25 and 110 days showed the MDH acrophases during the dark period. An inversion of the MDH circadian rhythms was detected in 25 day-old compared to those of 5 and 15 day-old rats. An inversion of the protein circadian rhythm was also detected at 15 days compared to that at 5 days. These inversions persist in the adult rats. The amplitude of the MDH and protein rhythms reached the lowest value in adulthood. The mean daily value of testicular MDH increased between day 5 and 15, decreasing at day 35 and remaining unchanged until adulthood. The variation of malate dehydrogenase activity, soluble protein content levels, and the circadian rhythm parameters during the maturation process may be related to gonad development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号