首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide sequence of a lysine tRNA from Bacillus subtilis.   总被引:2,自引:5,他引:2       下载免费PDF全文
A lysine tRNA (tRNA1Lys) was purified from Bacillus subtilis W168 by a consecutive use of several column chromatographic systems. The nucleotide sequence was determined to be pG-A-G-C-C-A-U-U-A-G-C-U-C-A-G-U-D-G-G-D-A-G-A-G-C-A-U-C-U-G-A-C-U-U(U*)-U-U-K-A-psi-C-A-G-A-G-G-m7G(G)-U-C-G-A-A-G-G-T-psi-C-G-A-G-U-C-C-U-U-C-A-U-G-G-C-U-C-A-C-C-AOH, where K and U* are unidentified nucleosides. The nucleosides of U34 and m7G46 were partially substituted with U* and G, respectively. The binding ability of lysyl-tRNA1Lys to Escherichia coli ribosomes was stimulated with ApApA as well as ApApG.  相似文献   

2.
Summary Isoaccepting lysyl-tRNAs from virus-transformed cells in culture were fractionated in the RPC-5 system into peaks 1, 2, 4, 5a, 5, and 6. tRNA 6 Lys previously was found predominantly associated with transformed cells. The codon response of each peak was determined in an E. coli ribosomal binding assay. tRNA 1 Lys , tRNA 2 Lys , and tRNA 4 Lys are highly specific for the 5AAG3 codon. tRNA 5 Lys and tRNA 5a Lys preferentially bind in response to AAA. tRNA 6 Lys binds in response to AAA 3-fold better than in response to AAG. The presence of thiolated nucleosides in the anticodon regions of tRNA 5a Lys , tRNA 5 Lys , and tRNA 6 Lys is indicated by I2-inactivation of aminoacylation ability with no effect on the other isoacceptors.Functional abilities of the isoacceptors were compared in a wheat germ translational system with tobacco mosaic virus RNA as messenger. All of the isoacceptors function about equally well in translation except for tRNA 6 Lys , which is only 14 to 24% as effective as the other isoacceptors.  相似文献   

3.
13C-NMR of ribosyl ApApA, ApApG and ApUpG   总被引:2,自引:0,他引:2  
The chemical shifts as well as the 13C-31P coupling constants of the carbon-13 nuclei in single-stranded ApApA, ApApG, and ApUpG are sensitive to sequence and temperature. ApApA and ApApG have similar properties with large shielding (up to 1.7 ppm) of many of the base carbons upon decreasing the temperature from 70 degrees C to 11 degrees C; the base carbons have smaller shielding changes in ApUpG. Large shielding and deshielding effects are observed for the 1', 3', 4' and 5'-carbons over this temperature range. Analysis of the 13C-31P couplings measured at the 4' ribose carbons show that the population of the anti rotamer about O5'-C5' varies from 98 to 75%, and is higher in ApApA and ApApG than in ApUpG. The CCOP coupling data at 2' and 4' is consistent with a blend of the -antiperiplanar/-synclinal nonclassical rotamers about the C3'-O3' bond, varying from 89/11% in ApApG to 55/45% in ApUpG. The coupling and chemical shift data support the thesis that ApUpG is stacked much less than the other two molecules. The stacked forms of all three trinucleotides is most easily interpreted by a standard A-RNA model. It is not necessary to invoke the "bulged base" hypothesis [Lee, C.-H. and Tinoco, Jr., I. (1981) Biophysical Chemistry 1, 283-294; Lankhorst, P.P., Wille, G., van Boom., J.H., Altona, C., and Haasnoot, C.A.G. (1983) Nucleic Acids Research 11, 2839-2856] to explain the contrast in 13C spectroscopic properties of ApUpG in comparison to ApApG and ApApA.  相似文献   

4.
5.
eIF5A is the only protein known to contain the essential and unique amino acid residue hypusine. eIF5A functions in both translation initiation due to its stimulation of methionyl-puromycin synthesis and translation elongation, being highly required for peptide-bound formation of specific ribosome stalling sequences such as poly-proline. The functional interaction between eIF5A, tRNA, and eEF2 on the surface of the ribosome is further clarified herein. Fluorescence anisotropy assays were performed to determine the affinity of eIF5A to different ribosomal complexes and reveal its interaction exclusively and directly with the 60S ribosomal subunit in a hypusine-dependent manner (Ki60S-eIF5A-Hyp = 16 nM, Ki60S-eIF5A-Lys = 385 nM). A 3-fold increase in eIF5A affinity to the 80S is observed upon charged-tRNAiMet binding, indicating positive cooperativity between P-site tRNA binding and eIF5A binding to the ribosome. Previously identified conditional mutants of yeast eIF5A, eIF5AQ22H/L93F and eIF5AK56A, display a significant decrease in ribosome binding affinity. Binding affinity between ribosome and eIF5A-wild type or mutants eIF5AK56A, but not eIF5AQ22H/L93F, is impaired in the presence of eEF2 by 4-fold, consistent with negative cooperativity between eEF2 and eIF5A binding to the ribosome. Interestingly, high-copy eEF2 is toxic only to eIF5AQ22H/L93F and causes translation elongation defects in this mutant. These results suggest that binding of eEF2 to the ribosome alters its conformation, resulting in a weakened affinity of eIF5A and impairment of this interplay compromises cell growth due to translation elongation defects.  相似文献   

6.
The tRNA synthesized by Escherichia coli during chloramphenicol treatment has altered chromatographic properties, as analyzed by reversed-phase chromatography. The data suggest that most of the tRNAs synthesized in the presence of chloramphenicol are immature, chromatographically distinct forms, capable of being converted to mature forms upon removal of chloramphenicol. Methylation of tRNA during chloramphenicol treatment appears to be quantitatively and qualitatively normal.The tRNA synthesized during chloramphenicol treatment differs from normal tRNA mainly in that it contains 60–70% less 4-thiouridine and dihydrouridine. Preliminary experiments indicate that these two minor bases are not required for normal aminoacylation. Phenylalanyl-, valyl-, isoleucyl- and lysyl-tRNAs from untreated and chloramphenicol-treated cells are equally functional in an in vitro hemoglobin-synthesizing system.  相似文献   

7.
It is generally believed that basic features of ribosomal functions are universally valid, but a systematic test still stands out for higher eukaryotic 80S ribosomes. Here we report: (i) differences in tRNA and mRNA binding capabilities of eukaryotic and bacterial ribosomes and their subunits. Eukaryotic 40S subunits bind mRNA exclusively in the presence of cognate tRNA, whereas bacterial 30S do bind mRNA already in the absence of tRNA. 80S ribosomes bind mRNA efficiently in the absence of tRNA. In contrast, bacterial 70S interact with mRNA more productively in the presence rather than in the absence of tRNA. (ii) States of initiation (Pi), pre-translocation (PRE) and post-translocation (POST) of the ribosome were checked and no significant functional differences to the prokaryotic counterpart were observed including the reciprocal linkage between A and E sites. (iii) Eukaryotic ribosomes bind tetracycline with an affinity 15 times lower than that of bacterial ribosomes (Kd 30 μM and 1–2 μM, respectively). The drug does not effect enzymatic A-site occupation of 80S ribosomes in contrast to non-enzymatic tRNA binding to the A-site. Both observations explain the relative resistance of eukaryotic ribosomes to this antibiotic.  相似文献   

8.
Letters to the editor: Accessibility of 5 S RNA in 50 S ribosomal subunits   总被引:5,自引:0,他引:5  
Only two sites in 5 S RNA react with Kethoxal in 50 S ribosomal subunits. These two sites, G13 and G41, have previously been found to be accessible in free 5 S RNA. Nucleotide sequences which have been suggested as possible binding sites for the T-ψ-C-G loop of tRNA are not accessible.  相似文献   

9.
Abstract: tRNA was extracted from brains of 3-, 8-, and 18-day-old rats that were injected intracerebrally, 45 min before death, with [3H]methyl methionine or [8-3H]guanosine, and intraperitoneally, 3 h before death, with l -methionine-dl-sulfoximine (MSO), a methylation-activating convulsant agent. Although there was no effect of age or of MSO on the per gram yield of tRNA, its specific radioactivity (dpm/A260) was highest at 3 days in both the control and the MSO groups. Age- and MSO-related changes in the tRNALys content of the brain tRNA pool were investigated by means of benzoylated DEAE- cellulose (BDC) and reverse-phase chromatography (RPC). BDC chromatography revealed tRNALys species in the brains of the MSO-treated animals that were absent in control brains. Of particular interest was the finding that differences in RPC-5 chromatographic mobility between control and MSO-tRNALys species were abolished by conversion to lysyl-tRNA, suggesting that the MSO-elicited change(s) in tRNALLys structure involved the binding site(s) for lysine. Two additional findings were made: (a) lysine acceptance by the [3H]methyl-labeled tRNALys purified from brains of the MSO-treated animals was higher than that of controls at 18 days; and (b) omission of the BDC chromatographic step accentuated the differences in mobility on RPC-5 columns between tRNALys species of control and MSO-treated brains. Lastly, we found that some tRNALys species present in the MSO-treated brains contained significantly different proportions of N2-methyl guanine and 1-methyl adenine, relative to controls. These MSO-elicited changes in the methyl base content of tRNALys of immature rat brain are the first evidence of an alteration of brain tRNA structure by a centrally acting excitatory agent.  相似文献   

10.
The conformation of the anticodon loop of tRNA (yeast) was studied by detecting the most strongly binding pentanucleotide among the pentamers obtained by digestion of ribosomal RNA with T1 RNase. This pentamer was identified as UUCAG which is complementary to the anticodon and the two pyrimidines on the 5′ side of the anticodon loop. Gel electrophoresis was used to detect binding. Control experiments employing other tRNA's showed that UUCAG formed a five base-pair complex with the tRNA. This indicates that the pentamer binds to the anticodon and the two pyrimidines to the 5′ side of it and lends support to a model for the tRNA loop which was recently proposed by Woese (1970).  相似文献   

11.
Structural studies have revealed multiple contacts between the ribosomal P site and tRNA, but how these contacts contribute to P-tRNA binding remains unclear. In this study, the effects of ribosomal mutations on the dissociation rate (koff) of various tRNAs from the P site were measured. Mutation of the 30S P site destabilized tRNAs to various degrees, depending on the mutation and the species of tRNA. These data support the idea that ribosome-tRNA interactions are idiosyncratically tuned to ensure stable binding of all tRNA species. Unlike deacylated elongator tRNAs, N-acetyl-aminoacyl-tRNAs and tRNAfMet dissociated from the P site at a similar low rate, even in the presence of various P-site mutations. These data provide evidence for a stability threshold for P-tRNA binding and suggest that ribosome-tRNAfMet interactions are uniquely tuned for tight binding. The effects of 16S rRNA mutation G1338U were suppressed by 50S E-site mutation C2394A, suggesting that G1338 is particularly important for stabilizing tRNA in the P/E site. Finally, mutation C2394A or the presence of an N-acetyl-aminoacyl group slowed the association rate (kon) of tRNA dramatically, suggesting that deacylated tRNA binds the P site of the ribosome via the E site.  相似文献   

12.
Strains of Escherichia coli have been produced which express very high levels of the tRNAleu1 isoacceptor. This was accomplished by transforming cells with plasmids containing the leuV operon which encodes three copies of the tRNALeu1 gene. Most transformants grew very slowly and exhibited a 15-fold increase in cellular concentrations of tRNALeu1 As a result, total cellular tRNA concentration was approximately doubled and 56% of the total was tRNALeu1. We examined a number of parameters which might be expected to be affected by imbalances in tRNA concentration: in vivo tRNA charging levels, misreading, ribosome step time, and tRNA modification. Surprisingly, no increase in intracellular ppGpp levels was detected even though only about 40% of total leucyl tRNA was found to be charged in vivo. Gross ribosomal misreading was not detected, and it was shown that ribosomal step times were reduced between two- and threefold. Analyses of leucyl tRNA isolated from these slow-growing strains showed that at least 90% of the detectable tRNALeu1 was hypomodified as judged by altered mobility on RPC-5 reverse-phase columns, and by specific modification assays using tRNA(m1G)-methyltransferase and pseudo-uridylate synthetase. Analysis of fast-growing revertants demonstrated that tRNA concentration per se may not explain growth inhibition because selected revertants which grew at wild-type growth rates displayed levels of tRNA comparable to that of control strains bearing the leuV operon. A synthetic tRNALeu1 operon under the control of the T7 promoter was prepared which, when induced, produced six- to sevenfold increases in tRNALeu1 levels. This level of tRNALeu1 titrated the modification system as judged by RPC-5 column chromatography. Overall, our results suggest that hypomodified tRNA may explain, in part, the observed effects on growth, and that the protein-synthesizing system can tolerate an enormous increase in the concentration of a single tRNA.  相似文献   

13.
In response to low (approximately 1 microM) levels of selenium, Escherichia coli synthesizes tRNA(Glu) and tRNA(Lys) species that contain 5-methylaminomethyl-2-selenouridine (mnm5Se2U) instead of 5-methylaminomethyl-2-thiouridine (mnm5S2U). Purified glutamate- and lysine-accepting tRNAs containing either mnm5Se2U (tRNA(SeGlu), tRNA(SeLys] or mnm5S2U (tRNA(SGlu), tRNA(SLys] were prepared by RPC-5 reversed-phase chromatography, affinity chromatography using anti-AMP antibodies and DEAE-5PW ion-exchange HPLC. Since mnm5Se2U, like mnm5S2U, appears to occupy the wobble position of the anticodon, the recognition of glutamate codons (GAA and GAG) and lysine codons (AAA and AAG) was studied. While tRNA(SGlu) greatly preferred GAA over GAG, tRNA(SeGlu) showed less preference. Similarly, tRNA(SGlu) preferred AAA over AAG, while tRNA(SeLys) did not. In a wheat germ extract--rabbit globin mRNA translation system, incorporation of lysine and glutamate into protein was generally greater when added as aminoacylated tRNA(Se) than as aminoacylated tRNA(S). In globin mRNA the glutamate and lysine codons GAG and AAG are more numerous than GAA and AAA, thus a more efficient translation of globin message with tRNA(Se) might be expected because of facilitated recognition of codons ending in G.  相似文献   

14.
Oligonucleotides containing a guanosine residue on the 5′ or the 3′ side of tri- and tetranucleotides were prepared. The guanosine residue was modified with the chemical carcinogen N-2-acetylaminofluorene and the control and modified oligonucleotides were tested for their ability to stimulate 14C-labeled amino-acyl-tRNA binding to ribosomes. The effects of the modification are twofold. The first is that if the guanosine residue to which the drug is eovalently bound is part of a codon the oligonucleotide is completely inactive in the ribosomal binding assay. The second is that if an adenosine residue is adjacent to either the 5′ or 3′ side of the modified guanosine, as in (Ap)3G or G(pA)3, there is partial inhibition of 14C-labeled lysyl-tRNA binding to ribosomes. This inhibitory effect extends only to the function of the immediately adjacent adenosine since the chemical modification of guanosine residues in (Ap)4G or G(pA)4 did not impair their ability to code for lysine. In contrast to these findings if there is a uridine residue adjacent to the modified guanosine, as in (Up)3G or G(pU)3 there is no effect on 14C-labeled phenylalanyl-tRNA binding to ribosomes. Proton magnetic resonance spectra of UpG, GpU and the corresponding dinners in which the guanosine residue was modified with the drug failed to indicate a stacking interaction between the fluorene moiety and the adjacent uridine residue. This is in contrast to previous studies demonstrating a strong stacking interaction between fluorene and adjacent adenosine residues. Taken together these results indicate that acetylaminofluorene modification of guanosine next to an adenosine residue in oligonucleotide inhibits its ribosomal binding capacity. The stacking interaction with adjacent adenosine, and not with adjacent uridine residues, in oligonucleotides probably accounts for the effects observed in the ribosomal binding assay. These data are consistent with our previously described “base displacement” model.  相似文献   

15.
《Gene》1997,193(1):59-63
Polymerase chain reaction (PCR) was used to amplify a fragment of DNA encoding a tRNA that recognizes the abundant CUC leucine codon from the chromosome of Streptomyces coelicolor. Sequence analysis of the gene, designated leuU, indicated that it codes for a tRNA 88 nucleotides in length that shares 75% identity with the Escherichia coli tRNALeuCUC, while it shares only 65% identity with the only other sequenced leucyl tRNA from S. coelicolor, the bldA encoded tRNALeuUUA. Accumulation of the leuU tRNA was examined by Northern blot analysis and shown to be present at constant levels throughout growth in contrast to the bldA-encoded tRNA which shows a temporal pattern of accumulation [Leskiw et al., 1993. J. Bacteriol., 175, 1995–2005].  相似文献   

16.
Threonine tRNAs and their genes in Escherichia coli   总被引:3,自引:0,他引:3  
Summary The subject of this study was the threonine isoacceptor family of tRNAs in Escherichia coli and the genes coding for them. The goal was to identify and map all the genes and to determine the relative contribution of each gene to the tRNA pool. The mapping experiments exploited gene-dosage effects in partially diploid strains; if a strain harboring a particular F episome overproduced a particular tRNA species, it could be concluded that the gene for that tRNA was located on the chromosomal segment carried by the F. Isoacceptor tRNAs were distinguished by column fractionation. It was found that there are three major threonine tRNA species that occur in roughly equal amounts. These are tRNA 1 Thr , which is encoded by a gene in the distal region of the rrnD ribosomal RNA operon, and tRNA 3 Thr and tRNA 4 Thr , which come from genes in the cluster thrU tyrU glyT thrT at 89 min on the map. The relative abundances of the tRNA species roughly match the reported frequencies of the codons that they recognize in mRNA. Although the tRNA 4 Thr has a mismatched base pair that raised questions about its biological activity, it was found to be functional at least with respect to recognition by the threonyl-tRNA synthetase. An apparent fourth gene affecting threonine tRNA has been identified and mapped at 6–8 min; it is here designated thrW. It may be a structural gene for a minor tRNA species, present in one-third the amount of each of the major species, and chromatographically indistinguishable from tRNA 4 Thr .A preliminary report of most of this work has appeared previously (M.M. Comer, Abstr. Annu. Meet. Am. Soc. Microbiol. 1980, p. 109)  相似文献   

17.
Photoreactive derivatives of insulin (B29-(p-azidobenzoyl-insulin) iodinated primarily in either the B26 or A14 tyrosine of insulin were prepared by lactoperoxidase catalyzed iodination followed by separation on reverse-phase high-performance liquid chromatography. The binding affinities and photoaffinity labeling characteristics of these derivatives were studied in isolated rat adipocytes. Under nonreducing conditions, three forms of the insulin receptor were labeled equally by the B26-derivative, the A14-derivative, and the mixture of the iodinated derivatives. When dithiothreitol was used to reduce the radiolabeled receptors, the radioactivity associated with the binding subunit was much less than that in the intact receptor and the magnitude of the decrease was proportional to the amount of iodine in the A chain of the photoderivatives. Use of the photoreactive derivative iodinated primarily in the B26 position resulted in greater labeling of insulin receptor subunits since most of the radioactivity (80%) remained associated with the receptor upon reduction.  相似文献   

18.
The 5.5 protein (T7p32) of coliphage T7 (5.5T7) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5T7 protein is insoluble when expressed in Escherichia coli, but we find that 5.5T7 can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5T7 binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5T7 can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5T7 protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5T7 protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression.  相似文献   

19.
E. coli tRNAPhe was modified at its 3-(3-amino-3-carboxypropyl)uridine residue with the N-hydroxysuccinimide ester of N-4-azido-2-nitrophenyl)glycine. Exclusive modification of this base was shown by two-dimensional TLC analysis of the T1 oligonucleotide and nucleoside products of nuclease digestion. The fully modified tRNA could be aminoacylated to the same level as control tRNA. The aminoacylated tRNA was as active as control tRNA in non-enzymatic binding to the P site of ribosomes, and in EFTu-dependent binding to the rirobosomal A site. The functional activity of this photolabile modified tRNA allows it to be used to probe the A and P binding sites on ribosomes and on other proteins that interact with tRNA. Crosslinking to the ribosomal P site has been shown.  相似文献   

20.
Highly purified tRNAs from Drosophila melanogaster were iodinated with 125I and hybridized to squashes of polytene chromosomes of Drosophila salivary glands followed by autoradiography to localize binding sites. Most tRNAs hybridize strongly to more than one site and weakly to one or more additional sites. The major sites for various tRNAs are the following: tRNA 2 Arg , 42A, 84F1,2; tRNA 2 Asp , 29DE; tRNA 3 Gly , 22BC, 35BC, 57BC; tRNA 2 Lys , 42A, 42E; tRNA 5 Lys , 84AB, 87B; tRNA 2 Met , 48B5–7, 72F1–2, 83F-84A; tRNA 3 Met , 46A1–2, 61D1–2, 70F1–2; tRNA 4 Ser , 12DE, 23E; tRNA 7 Ser , 12DE, 23E; tRNA 3a Val , 64D; tRNA 3b Val , 84D3–4, 92B1–9; tRNA 4 Val , 56D3–7, 70BC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号